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APPENDIX A

SYNOPSIS OF M_ATHEMATIGAL TECHNIQUES

i. INTRODUCTION

The application of recursive minimum variance data smoothing to orbital
navigation and the use of adjoint techniques in powered trajectory control
analysis have received considerable attention in recent literature. A great
deal of insight into these topics has been provided in a number of excellent
articles, but due to space limitations which are unavoidable in published
literature, interesting and explanatory details are omitted from the text. As
a result many readers who are unfamiliar with the subject must accumulate
information slowly from several sources using different nomenclature and
notation.I/

The purpose of this presentation is to consolidate the information pertinent
to this seemingly complex area of analysis and to organize the concepts for
application to space navigation and guidance as defined below. It will be
emphasized at the outset that no originality is claimed in any of the derivations
or interpretations which have been included; the entire presentation consists
of restatements of other authors' works. In addition, the accompanying
bibliography does not constitute a complete survey of applicable literature; it
is felt, however, that any reader who follows the articles referenced herein
will naturally be led to further developments in his particular area of interest.

For the purposes of this study the functions under consideration for
analysis are defined as follows:

NaviGation - The estimation of position and velocity from observations

which contain unknown random errors

i/ Although the matrix relations needed for this development are discussed in

some detail herein, a basic acceptance of vector and matrix algebra is

necessary as well as a fundamental understanding of orbital motion and

pr obability.
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Guidance - The determination, based upon navigation results, of the

maneuvers necessary to bring an orbiting vehicle to its desired destina-

tion

The theory of guidance and navigation is presented here as a detailed

study of the interrelations between various types of error which tend to de-

grade the performance:

Deviation of space vehicle from a known reference trajectory

Uncertainty in the position and velocity of the vehicle

Navigation measurement errors

Maneuvering errors

These latter two items, which can be considered as the ultimate sources of

error, are reasonably characterized by Gaussian statistics. To enhance the

evaluation of these errors, the development leads to a linear mathematical

model of the actual dynamic system. Although admittedly this step is taken

in order to capitalize upon existing analytical techniques, it should be kept in

mind that successful applications of the linearization theory have been made.

The presentation is kept as brief as the depth of the subject matter will

allow. For the sake of brevity, certain restrictions are placed upon the

scope:

The effects of bias errors upon minimum variance orbital navigation

have not been taken into account, and only "scalar" navigation measure-

ments are considered; i.e., it is assumed that only one observable can

be measured at a particular instant of time. (These restrictions do not

apply to the powered trajectory analysis).

Supporting mathematical theorems of secondary importance are simply

stated and referenced without rigorous proof.

No detailed discussion of the origin of the differential equations of

motion was felt necessary; it is sufficient to note that the acceleration

vector of a vehicle can be described by simple Newtonian mechanics.

Similarly, the equations relating navigation measurements to vehicle

geometry are treated in general form.

Although these restrictions render this presentation somewhat less self-

sufficient, they enhance the overall coherence for expository purposes. The

analytical extensions suggested by these restrictions can be found in the

applicable literature.
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2. CHARACTERIZATION OF TRAJECTORIES

A central feature in the implementation of the guidance and navigation

functions is the selection of terms used to define the vehicle flight path. In

this subsection trajectory characterization is described as a choice between

various transformations of the equations of motion and the constants of

integration pertinent to each form of the equations.

The equations of motion for a space vehicle in their most basic form

express the effects of forces (e.g., gravitation, thrust) upon accelerations

in space. It follows that the motion of the vehicle can be expressed as a

second-order vector differential equation. In the most general case the

vectors are three-dimensional, a forcing function is present, and the equa-

tions are nonlinear.

As a special case of this general condition, an example of a three-

dimensional vector differential equation without a forcing function is the

expression for a Keplerian orbit ina fixed rectangular coordinate system:

d2R

_ +--_3 R =0
dt 2 r --

(1)

where (R_.)is a cartesian vector of length (r) between the instantaneous vehicle

position and the center of gravitation and (_) is the gravitational constant of the

central force field. For any complete set of initial conditions

-R01] dR

R = R (to) = ROZ / ; V =-- (to)
--o -- --o dt

_R03J

-V01 -

= V02

V03
-- w

(z)

there exists a unique orbit which satisfies equation i. There are, however,

alternative ways of defining a unique orbit. As a first example, the vector

differential equation might be rewritten in another coordinate system to

facilitate integration. In fact, the transformation of equations of motion into

generalized coordinates and the determination of the corresponding constants

of integration is a science in itself. Examples of alternative parameters

which could be used to define an orbit are

Two position vectors separated by a fixed time interval or eccentric

anomaly

The semimajor axis, eccentricity, inclination, longitude of the ascending

node, argument of the perigee, and mean anomaly at epoch time
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Various nonsingular (Ref. l) combinations of these basic orbital ele-

ments

To explain this last example, it is noted that the perigee is undefined for

a circular orbit and the ascending node is undefined for an equatorial orbit.

In spite of these singularities, it is possible to use combinations of the basic

elements to define meaningful orbit equations that are applicable to all con-

ditions.

Selection of orbit-defining parameters fixes the type of computations

needed for characterization of vehicle motion; the prescribed navigation

calculations are slanted toward the determination of these parameters, which

in turn are used to compute the vehicle position and velocity at a specified time

of interest. Significantly, a nonsingular solution to equation 1 is expressible

(Ref 2) in terms _f the cartesian position and velocity vector components

(Rkj and Vkj respectively) at a given epoch time (tk):

R. (tin) = R , • • i I, 2, 3 (3)I mi (Rkl RkZ, Rk3, Vkl, VkZ, Vk3 t -' m tk)' =

V. (tin): V , ; - • i 1 Z, 3 (4)1 mi (Rkl RkZ, Rk3, Vkl, VkZ, Vk3 tm tk)' = '

where the vectors

Rml

R = R (tin) = Ring ; V = V (tin) =--In _ --rll --

Rm3

Vml

Vmg

Vm3

(5)

represent the solution of equation 1 at time (t ). Immediately this suggests
m

the possibility of using the position and velocity vector components them-

selves as the trajectory parameters. This procedure provides direct dynamic

transformations and facilitates the estimation updating process. Immediately

after a measurement or a velocity impulse, the updated (and, in the case of a

measurement, improved) observed position and velocity vectors can replace

the previous estimate.

Ref.

Ref.

I Cohen C. J. and E.C. Hubbard, A Nonsingular Set of Orbit Elements,

NWL Report No. 1756.

2 Pines S., H. Wolf, D. Woolston, and R. Squires, Goddard Minimum

Variance Orbit Determination Program, Goddard Space Flight Center

Report No. X-640-62-191.
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The above approach typifies the state variable formulation of dynamic
systems. As applied to the case at hand, this formulation calls for the def-
inition of a six-dimensional state vector:

x A A
--m = X(tm) =

Xml

X
m2

Xm3

Xm4

Xm5

Xm6
n

Rml

Rm2

A Rm3

Vml

Vm2

Vm3
R

(6)

and the symbolic representation of the equations of motion (equations 3 and

4) are written as

X i t m Xmi Xkl XkZ X k • t k • , ...,( ) = ( ..... ' 6' t - ), i = 1 Z, 6 (7)m

At any given time, then, the position and velocity vector components form a

set of six state variables, constituting a six-dimensional state vector which

defines a unique orbit without any singularities in the mathematical expres-

sions.

This basic approach can now be extended to nonhomogeneous systems.

When a forcing function is present, equation 1 is replaced by:

dZR

"-+_T R =F
dt a r

(8)

where

Fl(t)
F_= F Z (t)I

F 3 {t)J

(9)

defines a time-varying force vector in three-dimensional space.

th
According to a fundamental mathematical principle, any n order, x-

dimensional matrix differential equation can be transformed into a first-order

differential equation in nx dimensions; it follows that equation 8 can be re-

written in terms of state variables as:

(x_'_ i (t) = X i l(t), Xz(t) ..... X6(t), Fl(t), Fz(t), F3(t); ;
(z0)

i= i, 2 ..... 6

A-5



Although in general no closed-form solution exists for this expression, it is
always possible to obtain a unique numerical solution for any specific forcing
function and initial conditions. Z/Suppose, for example, that the state vector

is known at some time (tin); its derivative at time (tin) can be computed from
equation l 0:

t=t
m

: _mi(Xml, Xm2, ..., Xm6, Fml, Fro2, Fro3; tm_;

(ii)

i=l, 2 ..... 6

and the state vector at a short time later, dr, can be computed as:

X = X + (dt)X ; dt = t - t (IZ)
m+ l --rn --m m+ i m

Combination of the last two expressions results in a recursive relation for

Xm2 ..... Xm6, Fml, Fm2, Fro3; dr)

the state variables:

Xi(tm + 1) = Xm + 1,i (Xml'

i=l, 2 ..... 6

(13)

It should be emphasized that this analysis is not limited to any specific

coordinate system. The relationships derived herein exist (at least in

numerical form) for any complete nonsingular set of independent state vari-

ables which can be used to define the motion.

3. PREPARATION FOR USAGE OF SYSTEM EQUATIONS

Given exact values of a set of parameters which define a unique flight path,

it is a simple matter to compute the exact value which any observable {e. g.,

instantaneous altitude, orientation of instantaneous local vertical with

reference to a known reference, doppler shift of radar return from a beacon)

will have at any point along the path. The inverse of this operation - i. e. ,

determination of the flight path from actual observations {which constitutes

the navigation problem) - is not quite so simple; the major obstacles to this

task arise from the following two points:

In general, the observations are not simultaneous. The trajectory param-

eters, therefore, cannot be expressed as explicit functions of quantities

available from navigation data. Precise determination of the flight path would

require the solution of a set of simultaneous nonlinear equations, including not

Z_/ The discussion of numerical integration applies not only to the case in

which the forcing function is an independent variable, but also to the closed

loop situation, when the vector (_Fro) is an implicit time function, which

must be computed from observed state variables according to a pre-

scribed guidance law.
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only the relations between state and observables, but also the expressions
describing the dynamic state variations as a function of time.

A significant amount of error will in general be present in the navigation
measurements. Therefore, in order to determine the flight path accurately,
a relatively large number of navigation measurements must be taken, and the
data must be averaged in some manner to reduce the influence of measure-
ment errors.

The necessity for solving high order systems of equations which involve
various nonlinear and transcendental relationships must be avoided, at least
for practical reasons. Furthermore, the concept of an exact solution to these
equations has little meaning in an actual case because:

Inevitably, some random error will remain after all navigation measure-
ments have been processed.

There is no exact mathematical model of any existing gravitational field;
even the gravitational constants are not known exactly.

When the number of measurements exceeds the minimum required to
define a unique trajectory, the complete set of equations, taken literally,
is inconsistent.

The relationships used to transform navigation data into trajectory in-
formation, then, must be approximations based upon known geometric and
dynamic equations. An excellent opportunity for approximation is afforded by
the existence of a known reference trajectory; the physical relationships
between the observables and the flight path parameters, expressed as Taylor
series expansions about this reference, converge rapidly for neighboring
trajectories. In fact, for small deviations from the reference, the first
order term alone provides a reasonable approximation to the expression of a
physical law. With this expedient, the equations relating an observable (Ym)
to the instantaneous state at time (tin) are written in terms of differential
corrections.

6 6Y
ym A 6Y "- Z m-- x (14)m 6X mi

i=l mi
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where:

XmZ

Xm3
A A (15)x =6X =

--m --m Xm4

Xm5

Xm6

is defined as the deviation of the six-dimensional state vector from its ref-

erence value at time (t). It is convenient to arrange the measurement
m

derivatives into a I x 6 row vector:

H A lh 6] ; h A 0Ym (16)--m = ml hmz hm3 hm4 hm5 hm mi-- aXmi

so that equation 14 can be written as:

Ym H x (17)--m--m

The same procedure is applicable to the equations of motion; for example,

from equation 7 it follows that:

6 OX
mi

Xmi = _ aX k Xkj; i = l,
j=1 j

or in matrix form:

Z, ..., 6 (18)

_ m:r ]
[0x__k Xk

where the quantity in square brackets is the symbolic form of a 6 x 6 matrix

of partial derivatives, representing the transition in the state vector devi-

ations from time (tk) to (tin). For a Kepierian orbit, all elements of this

matrix are directly obtainable through differentiation of the six expression

indicated by equation 7,3/with aI1 derivatives being evaluated on the reference

orbit.

3/ Vector solutions to the Keplerian orbit are derived in Ref. Z.
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To apply the same technique to the nonhomogeneous case, equation 11 can

be approximated as:

x [qXm+[O4:m_m

where the [A] and [13] matrices are defined

and

"1
In all cases of interest for this study,

symbolically4/as:

(20)

(2i)

(22)

the thrust vector variation (fro) is

determined by the application of a guidance law to the observed state vector

deviation (__Tn) thus:

C om-

where (_m) is the error in the observed state. (The 3 x 6 time-varying

guidanc_ law matrix rsm]iS exemplified in Section 6 of this appendix. )
bination of this expressio_nL with equation 20 yields:

x :[qx--m m --m (24)

where:

[Dm]_[Bm][ Sm] (Z5,

and:

[A/m]= [Am]+[Dm} (26)

The approximations preparatory to the evolution of a data processing

scheme are now complete. Both the dynamic state variations as a function of

time and the equations relating observables to the instantaneous state have

been expressed as linear relationships with coefficients that are known (i. e. ,

obtainable by numerical evaluation of solutions to the reference trajectory

in equations). The linearity of equations 17, 19, and 22 promises a

4/
It follows from the dimensions of X and F that ram" ] is a 6 x 6 matrix and

IBm}iS a 6 x 3 matrix. Clearly these can be considered_J as known quan-

tities, since all matrix elements can be computed directly by evaluating

the derivatives of the nonlinear equations of motion at time (tin) on the

reference trajectory.
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straightforward navigation computing procedure and, as explained in the

next section, affords an extremely valuable technique for dealing with random

errors.

4. CHARACTERIZATION OF RANDOM VARIABLES

In preceding sections it has been recognized that the navigation measure-

ments contain random errors. It is readily seen that these errors will lead

to discrepancies in the observed state and consequently in the computed thrust

vector correction deemed necessary to trim the flight path. This error in

the apparent desired thrust, combined with the effects of imperfect engine

control, will in turn cause the trajectory to deviate from the intended course.

The effects of these errors, propagated through the appropriate transform-

ations, are naturally at the center of attention in this analysis. As a

starting point in illustrating these transformations it is of interest to con-

sider the influence of trajectory deviations upon the true value of an observ-

able.

From the definitions of y, x, and H in the preceding section,

17 is written in the equivalent--form5-/

y = hlX l + hzx Z + ... + h6x 6

equation

(27)

Assuming for the moment that the state vector deviation components are

normally distributed with zero mean;6-/i, e. :

Pi(Xi) _ °'i exp iZo_ij,_ ,

i = i, Z, ..., 6 (Z8)

and recalling that the coefficients h i are deterministic {i.e., nonrandom;

obtainable from evaluation of partial derivatives along the reference tra-

jectory), it follows from a basic statistical principle that the weighted sum of

the random variables in equation Z7 must also be a normally distributed

random variable with zero mean. To complete the definition for the prob-

ability distribution of y, therefore, all that remains is to derive an expres-

sion for its variance. It is informative to approach this problem gradually,

5/ The time-dependence subscript (m) is tentatively omitted for clarity of

this development.

6/
-- Although this is a reasonable assumption,

later in this section.

it is subject to justification
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starting with the special case (to be generalized later in this subsection) in
which all of the variables xi are statistically independent; i.e. 7/

Pij = _. _.
i J

For the case in which all variables x. have zero mean, equation 29 reduces
to: z

x.xl j=av xix = O, i# j

and the square of equation 27,

(30)

6 6 6

2 Z _Z _, h x. + 2 h.h.x.x. (31)
Y =i=l I i i=lj=l I j I j

when averaged, does not contain any nonzero cross products:

6

2
Z _ h 2_

Y =i=l I x.1

Since for any random variable (z):

Z----2 Z
z = (z) +

z

equation 30 leads to the relation:

0"

2 6
_E h.2 2--- O-

y i=l I i

(32)

(33)

(34)

It follows that the probability density function for (y) is:

p(y) =
-y

i exp Z 2

J 6TrZ h o-. z 1
i= 1 J. 1 "=1

(35)

7/ Equation 29 is actually a condition of pairwise linear independence only.

For Gaussian random variables, however, this automatically assures

complete statistical independence.
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This equation can also be derived in a more general form from the joint prob-
ability density function

1 6 x.

P (Xl' xg' "''' x6)= 6 exp Z I

(2w)3 H (ui) i=l _-_i' (36)

i=l

which follows directly from equation 28 and the multiplicative law for joint

probabilities of independent random variables. For this purpose it is con-

in which the i, j,venient to define a covariance matrix for the vector (x),

element is the mean product (xi xj):

n

g

x I x I x g

Z

x Z x I x Z
I

\
I
I
I
I

\
\

\

x 1 x 6
I
I
I
I
I

I

\ I
\ I

\ I
m

x 6 x I ......... Z
-- --_X 6 -

For the particular case being considered, IN] is a diagonal matrix with the

-Z In this case it is obvious that(i, i) element equal to the variance G. •

equation 36 can be written as: i

8/

(37)

_ ir.ll,/_ exp -'_' x N- x (38)
I I=...I I

where I [']1 and {N-l} represent the determinant and the inverse of N re-

spectively. The advantage of writing the function in this form is that

equation 38 is not restricted to special conditions of zero mean and indepen-

dence between pairs xi, xj. To illustrate the utility of the covariance matrix

formulation, it is noted that the statistical properties of y can be determined

8_/ The superscript (T) is used to denote the transpose of vectors and

matrices. It should be noted that, when a column vector is postmultiplied

by its transpose, the resulting square matrix is symmetric.
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from the state variable deviations in a single step, merely from linear

transformation (equation 17) and the definition of a covariance matrix9/:

Since H is deterministic, it can be taken out of the averaging operation:

2 _x x T H Ty = H av _ _ (40)

As a further example of linear statistical transformations through the

covariance matrix, it follows from equation 19 that:

NmA _Xm' _n_ av _(t m, tk) X kxk T T= cov = (t m, tk) _ (41)

where[_(t m, tk)] is defined as the state transition matrix symbolized in

equation 19. Again, since this is a deterministic matrix, equation 41 becomes:

Nm _(tm, tk ) Nk_T= (t m, t k) (42)

The 6 x 6 covariance matrix can be envisioned as a partioned array of four

3 x 3 matrices:

N __.

N I) N (Z) ]N (3) N (4) (43)

in which the submatrices IN (I)] and IN (4)]are the position and velocity

error covariance matrices respectively. It should be noted that the diagonal

elements of these submatrices are defined as mean squared components of

error. For an orthogonal coordinate system, then, two significant relation-

ships become clear:

9/ The scalar y can be thought of as a degenerate 1 x l vector or as a degen-

erate matrix, for which the properties of vectors and matrices still hold

true. For example,

a. The covariance "matrix" of y is a l x 1 matrix with a single element

equal to the mean squared value.

b. The "transpose" of y is equal to the product of the transposes of H and

x, multiplied in reverse order.
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The trace- i.e., the sum of the diagonal terms- of C-IkN(1)jis the

mean squared position error.

The trace of IN (4}] is the total mean squared velocity error.

total

Another important property of the trace arises in regard to coordinate
rotations. Physically, the total mean squared error is obviously independent
of the coordinate system used to define that error. Mathematically, the trace
of a matrix is invariant under a similarity transformation (Ref. 3).

Assume that it is desirable to express the position error in a new co-

ordinate system by means of a rotation matrix _W ] :

(AR)k : [W] (6R)k (44)

The statistics of the error, expressed in the new coordinates, become

cow --wcoy{ w (45)

Equation 43 defines a similarity transformatio lr__0/. As applied to guidance

and navigation, it is often used to reexpress the position or velocity errors

at some point in terms of horizontal, vertical, and transverse components.

As another illustration of error coordinate transformations, it is instruc-

tive to consider the principal axes of error. To elaborate on this point, con-

sider the possibility that a unit vector U exists such that, for an n x n sym-

error matrix kPj, the matrix transformation leaves the direction ofmetric

the vector unchanged; i. e. :

-- (46)

Ref. 3
Goldstein, Classical Mechanics, London: Addison-Wesley 1950, p. 105

10/

--'As defined in Ref. 3, the similarity transformation is made through pre-

multiplication by the transformation matrix and postmultiplication by its
inverse. Since, however, [WJ is a rotation matrix, its transpose and its
inverse are identical.
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where (X) is a real scalar. Actually, for any nx n symmetric matrix, there

are n orthogonal vectors which conform to this equation. To illustrate the

existence of a set of "eigenvalues," k., and corresponding "eigenvectors,"
i

U., equation 46 is written for a 3 x 3 P-matrix as:
--i

m

Pll

PZI

P31

- Ii

-|
PI2 Pl3 Uli]

PZZ - >'i P23 ugi

P32 P33 - >'i u3iJ

= O, i=l, Z, 3

(47)

.th
where (uji) is the jth component of the i eigenvector.

The above expression will hold when the determinant of the matrix on the

left vanishes. This condition leads to a cubic equation in I.; the three roots
I

of this cubic are the eigenvalues, ll/

The vectors U. can be interpreted geometrically as a set of principal axes
--i

for an ellipsoid. Their directions are found as follows: In equation 47 replace

Uli, uzi, and u3i by x, y, and z respectively, and from the nine scalar equa-

tions implied by equation 47, select the following three:

(Pll - >_i) x + PlZ y + PI3 z = 0 (48)

P21 x + (Pz2 - kZ) y + PZ3 z = 0

P31 x + P32 y + (P33 - k3) z

Each of these equations represents a plane.

planes will be a straight line in the direction of an eigenvector.

eigenvectors will be mutually orthogonal.

(49)

= o (5o)

The intersection of each pair of

The thr ee

11/
In ref. 3 it is shown that all eigenvalues of any hermitian matrix (and

therefore of any symmetric matrix) are real, and the eigenvectors form

an orthogonal set. It sometimes happens that the cubic eigenvalue equa-

tion has multiple roots; the solution for the eigenvector set is not unique

in this case. The fact remains, however, that it is always possible to

find a real orthogonal set of eigenvectors and a corresponding set of

real eigenvalues satisfying equation 46.
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As applied to the navigation problem, the significance of the principal
axis transformation lies in the insight it provides into the state vector un-
certainties. For example, suppose that the uncertainty covariance i-natrix
at time tk;

Pk _ avI__k _T) (51)

is extrapolated by the familiar linear transformation to an intended measure-

ment time (tin):

T
P = cI_ (t (t (52)m m' tk) Pk cI_ m' tk)

and this extrapolated matrix is partitioned into four 3 x 3 submatrices:

P
m

p ,l p 121]

rn

[p 3,P' 'm (53)

As an example of the utility of the principal axis transformation, consider the

case in which the largest eigenvalue of [Prn(1) ]happens to correspond with

the instantaneous vertical direction of an orbiting vehicle at time t ; this
rn

would indicate that an altitude measurement would be particularly helpful.

More generally, the eigenvectors of [Pm(1)] and [Prn(4)] c°uld beusedto

select the position-sensitive and velocity-dependent measurements respec-

tively, which contain the most significant information at any given measure-

ment time.

It is now clear that the linearized models of trajectory dynamics and

measurement geometry have provided powerful tools for analyzing trans-

formations of statistical variables. The merits of linearization are further

illustrated in the following subsections, in which the navigation and guidance

techniques are expressed in terms of straightforward linear transformations.

Since, therefore, all transformations of the random errors encountered

in the entire analysis can be linearized, and since the ultimate sources of

error (i.e., measurement and thrust errors) are Gaussian with zero mean, 12/

l_._g/Actually, this comment applies only for an ensemble of missions, for

which the average bias errors must vanish. The effects of bias errors

upon orbital navigation, as previously explained, are out of the scope of

this presentation. Bias effects in powered flight are discussed in Section 6.
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it follows that the state variable deviation x . anduncertainty_ . errors at
ml ml

any time t are similarly characterized, and their statistics are completely
m

defined bythe covariance matrices [Nm] and [Pm] respectively.

Thus far orbital (unpowered) and powered flight have been treated simul-

taneously in this presentation and certain characteristics applicable to both

trajectory types have been explored to prepare a suitable mathematical rep-

resentation for analysis. From this point on powered and unpowered flight

are analyzed separately because of differences in methods of applying the

analytical model. In the sections to follow, mathematical techniques are

described which illustrate:

• Transformation of navigation measurement data into accurate

trajectory estimates

• Transformation of observed trajectory deviations into guidance

commands

• Corruption of these processes by navigation and guidance errors

• Effects of navigation and guidance transformations upon error

statistics

For both orbital and powered flight, then, the techniques to be explained

will serve to describe both the physical system and an analytical method of

evaluating its performance.

5. APPLICATION OF ANALYTICAL MODEL TO ORBITAL FLIGHT

As applied to flight paths which are essentially free-fall trajectories (with

the possible exception of an occasional impulsive velocity change}, the fore-

going problem formulation leads readily to useful techniques for orbital

navigation and guidance. The development of these techniques and the per-

formance analysis of systems utilizing the techniques are treated in this sub-
s e ction.

To demonstrate the task to be performed in processing the navigation

measurements as a preparation for orbital guidance, it is convenient to

postulate the flight of a space vehicle in a given gravitational field:

At time tA an attempt is made to inject a vehicle by a velocity impulse 13/

into a free fall trajectory nominally characterized by a given initial state X
_O °

13/ The subscripts A and o are used to distinguish between conditions before

and after the impulse respectively.
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However, because of departures from the nominal initial position (which of
course cannot be corrected by a velocity impulse) and because of uncertain-
ties in the actual initial state, combined with thrusting errors, the actual
vehicle trajectory will not coincide with either the originally prescribed
nominal orbit or the orbit defined by the estimated state immediately after
injection. To provide compensation for these errors, a plan is devised
whereby an impulsive thrust correction will be determined for application
at a prescribed time of orbital correction, tE. Determination of the thrust

command is to be based upon the estimated state at time tE, computed from
the observed orbit after all navigation data have been processed.

5. 1 Navigation Data Processin_ by Least Squares

One possible scheme for processing the measured data is the least squares

method, which is conveniently illustrated by the following example.

Suppose that a large number M of measurements is prescribed and, in

addition to the nominal value Y of the observable at each measurement time
m

tin, thematrices[Hn_ and[q_(tm' to) ] defined in equati°ns 17 and 19 re-

spectively are computed from the nominal orbit. It is convenient to combine

equations 17 and 19 into the expression

ym = C x--m --o

where the row vector [ C__m ] is the product (54)

C = H _ (t m, to)--m --m
(55)

With all M measurements taken into account, there are M simultaneous

linear equations which can be combined into the matrix relation

y= C x
--0

(56)

where [C] is a (M x 6) matrix with the m th row defined by equation 55 and

y is an M x I vector of deviations from nominal measurement values.

If only six measurements were taken, the initial state vector deviation

could be computed from these measurements merely by inverting equation 56.

Obviously, however, this is inferior to a scheme whereby a larger number of

measurements is taken in the same total time duration and the results are

averaged. In this case the matrix [C] is not square and before inversion
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can take place the basic equation must be multiplied by the transpose of

• I(= C x
_0

The matrixproduct [cTcI is always square, and

(57)

"-0
(58)

Here, in writing the observed state vector deviations as an explicit function

of known quantities, the circumflex is used to illustrate the degradation

caused by measurement errors. The true value of an observable (Y ') can-
rn

not be measured without the inclusion of an error (_ m):

A !

_Vm = Y - y + a = _vm + a (59)m m m rn

Theoretically, with a sufficient number of measurements, the effects of

these errors will be minimized due to averaging. Thus it would appear that

a simple and accurate solution has been found for the initial state and there-

fore for the entire orbit. This method, however, is subject to difficulties

in extrapolation over extended time durations and furthermore is critically

dependent upon two conditions:

The vehicle must be sufficiently close to its reference state so that

equations 17 and 19 are accurate.

It must be possible to obtain an accurate inversion.

Unfortunately, satisfaction of the first requirement does not at all

guarantee the second; equation 58 is subject to errors incurred in matrix
..%

inversion. The matrix t CT CJ approaches singularity (i.e., its deter-

minant approaches zero) as the total time encompassing the measurements

increases. (Ref. 2)

To circumvent the difficulties present in the least squares process, mod-

ifications of the basic technique have been developed. It has been shown (Ref.4)

Ref. 4
Magness, T.A. and J.B. McGuire, Comparison of Least Squares and

Minimum Variance Estimates of Regression Parameters,Ann. Math.

Stat., Vol 33, June 1962, P. 462 A-24
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that at best the weighted least squares method is equivalent to the minimum
variance (also referred to as the Markov and as the maximum likelihood}
technique. For linear systems the minimum variance method is optimum
from a statistical standpoint. As its name implies, it minimizes the rms
error in the estimated position and velocity. This technique will now be
described.

5. g Navigation Data Processin_ by Minimum Variance

In a paper by R. E. Kalman, (Ref. 5) the minimum variance formulation

has been derived in recursive form. As applied to the navigation problem at

hand, this technique provides a completely updated estimate of the vehicle

state after each measurement. This is done by extrapolating the most re-

cent 14/ estimate x̂ to determine the predicted state vector deviation
--m-l'

x (-} immediately before the (mth) measurement
--m

(-) A
x : _ (t t -1 ) x m {60)--m m' m -1

and correcting this estimate by means of a linear transformation of the new

data point:

x =x +K Vm-V--m --m --m

where is the predicted measurement deviation

(-} (-) (6z)
Ym A H x--" --rfl --m

The weighting vector K , to be derived in this section, can be regarded
--m

as an error distributor which attributes the measurement deviation to each

possible cause in accordance with the a priori sensitivity of the measurement

A A
14/ For the first measurement the vector x = x is the observed de

--m-i --o

viation from nominal state immediately after the impulsive injection.

For subsequent measurements the vector ^
Xm_ 1 is the observed de-

viation from nominal state immediately after the last measurement.

Ref. 5
Kalman, R.E., A New Approach to Linear Filtering and Prediction

Problems, Trans. ASME, Series D., Jour. Basic Engr., Vol 8Z,

No. l, March 1960, pp. 35-45.
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to that cause and the theoretical capability of the weighted state vector cor-
rection to reduce the rms uncertainty in the estimate. This distribution is
achieved by combining the effects of the measurement sensitivities with the
statistical behavior of the measurement errors and of the state vector un-
certainties in the determination of the optimum weighting coefficients. All
that is required for this purpose is aknowledge 15/of the measurement error

variance (which may in general vary from one measurement to the next) and

of the initial state vector uncertainty covariance matrix [ Po] " The ensuing

derivation, then, will include a procedure for updating the P-matrix as well

as an expression for K .
_m

The derivation of the optimum weighting vector (Ref. 8) begins with a com-

bination of equations 17, 59, 61, and 62:

^ [ ()]x = x + K H x - x + K a (63)
--m --m --m --m --m --m --m m

From the definition of x :
--m

~ A
x A x - x (64)
--m = --m --m

15/ Actually, as demonstrated inRef. 6, an approximation to the true meas-

urement error statistics will suffice. Also, the adoption of a pessimistic

diagonal initial uncertainty covariance matrix will provide a conservative

result. Since final errors are reasonably insensitive to initial errors

(Ref. 7) the results will not be too pessimistic.

Ref. 6
Gunckel, T.L., Orbit Determination Using Kalman's Method, Journal

of the Institute of Navigation, Vol. 10 No. 3, Autumn, 1963.

Ref. 7
McLean, J.D., S.F. Schmidt, and L.A. McGee Optimal Filtering

and Linear Prediction Applied to Midcourse Navisation System for the

Circumlunar Mission, NASA TND-IZ08, 1961.

Ref. 8
Battlin, R.H., A Statistical Optimizing Navigation Procedure for Space

Flight, ASRJ, Vol. 32, No. ll, Nov. 1962, pp. 1681-'1696.
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it follows that the error in the updated estimate is:

x~ = [I66 -K_m_mH ] [ X_m -X_m(-)]-K__m a m (65)--16/--m

[- ]which could be written in terms of a prediction error x (-)
--m

as:

I66 ]
x -- - K H x (-) - K a (66)
--m --m--m --m --m m

It is permissible to postmultiply each side of this equation by its transpose

and take the expected value. This leads to equation 67 in which, on the right

side, the cross products involving (am) and [--rex(-)] vanish: 17/

av - : -_ _] _v{xc-_[x_-_]_}{ XmXJ} [I66--m --m --m

[_____ _]+_ o _--m --m --m m --m

(67)

where

If

(68)

{- [- ] }p (-) A av x (-) x (-) T (69)
m = --m --m

equation 67 can be written as:

m 166 --m --m m I66 --m --m m --m

It will now be explained that to optimize the weighting vector, a value must be

_ound_o_[__m]w_w_m_n_m_o_o_eo_[_] _on_er_

_ [%] ._h16/ The notation is used to denote a j order identity matrix con-

sisting of l's in the principal diagonal and zeroes elsewhere.

1___7/ The prediction prior to the measurement is obviously independent of

a and, as previously explained, all random variables in this analysis
m

have zero mean.
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I

partitioned form of the above expression in which all (6 x 6) matrices are re-

written in terms of (3 x 3) partitions; e.g.:

[Pm]

p (1} p (Z}
m m

p {3) p {4}
m m

(71)

__-- [I33 033

LO33 I33

(72) 18/

and the (6 x i) vectors are partitioned as

[K_m ] _ [--Km(2) , [Hm] [__Hrn(1 ) (2)

With equation 70 written in partitioned form it is readily seen that

is independent of [Km(Z) ] and that [Pm(4)] is independent of [Km(1) ]. It

[ ] is selected to minimize the trace ofthe 6x6follows that when K__m

P-matrix, it is automatically ensured that the individual traces of the

position uncertainty and the velocity uncertainty covariance matrices are

minimized separately.

pro i

The trace of the covariance matrix is minimized by means of the vari-

ational technique, a vectorial counterpart to the familiar minimum-maximum

problem of elementary differential calculus. To apply this technique to

equation70, the vector[K m] is replaced by [K__m+6Km] , and the first

order residual covariance[6 P ] is found by subtracting the result from
L m ]

equation 70, neglecting all terms of second order in 6 • It can readily be

verified that the result is:

_/1_. The notation [Oij ] is used to denote a (ixj) matrix in which all elements
&. J

are zero.
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H p Ill TK T]--m--m m 166 - Hm --m

+[ I66- K__m Hm]
P (-)H T T6K

m --m --m

T T
-6K Q K - K Q 6K--m m --m --m m m

(74)

It will be noted that each pair of consecutive terms on the right of this

expression is a transpose pair; i.e., since:

Pm (-) --= [Pm (-)] T

for any symmetric matrix, then

6K H P (-) L[I66 - H T--m --m m -- m KmT] :{[I66 - _K mHm]

P (-)H T
m --m

T

and

5KO T[ T]= K Q 6K
--m m --m --m m --m

T

From the definition of a trace, it follows that the trace of a matrix is

equal to that of its transpose, and from equation 74

trace {6Pm} : Z • trace {[ I66 - --mK Hm] Pm ( ")_HmT6_mTK

-K Q 6K T[ -
--m m --m ]

In order that the trace of [Pm] be a minimum, the following conditions

must hold: the total residual error must vanish for an arbitrary nonzero

variation in the weighting vector, or

trace{6Pm}:0;6K _ O--m --61

From equation 78 then:

-) H T ---KmQm =O61[ I66 - K m_Hm] Pm(
m

(75)

(76)

(77)

(78)

(79)

(8O)
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|

or

:P (-)H T[_H P (-)H T+Q ]-I--m m --m m m --m m
(81)

It is now convenient to write equation 70 as:

Pm = [I66 ---inK _Hm] Pm (-) -Pm {-)-mH T_mK T

--m m in --m --in

(82)

Combination of the last two expressions yields:

(-)
P =[ I66-K H ]Pm --in--m in

(83)

This completes Battin's derivation (Ref. 8); the minimum variance data

processing scheme is defined by equations 61, 81, and 83. The merits of

this technique are:

The acquisition of an optimum updated state vector estimate after each

measurement is obviously preferable to waiting for the accumulation of

several data points.

The recursive nature of the computations implies a lenient storage

capacity requirement for the minimum variance computer.

The type of computations necessary for data processing is simple (e.g.,

no large matrix inversions are necessary).--19/

The continuous updating procedure affords an opportunity to ininirnize the

error due to linearization by computing all partial derivative matrix ele-

ments from the updated estimate.

This last point was advocated early (Ref. Z, 9) in the development of

minimum variance orbital navigation. To implement this procedure, the

19/
The order of the inversion indicated in equation 81 is equal to the number

of simultaneous measurements, whereas with weighted least squares the

order of the required inversion is equal to the total number of navigation

measur ernents.

Ref. 9

Smith, G.L., S.F. Schmidt and L.A. McGee, .Application of

Statistical Filter Theory to the.Optimal Estimation of Position and

.Velocity on Boarda Circumlunar Vehicle, NASA TR R-135, 1962.
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extrapolation of equation 60 is replaced by equation 7 with the components of
A (-)

the estimated state vector X used to predict the state X The state
A -m-i -m

vector-m-iX is also used to compute the transition matrix [F_(t__'t?_)l:l for
extrapolating the P-matrix, and the predicted state vector X ( is d_to

(_) - m
compute both the predicted measurement Y and its partial derivatives

m

H . The weighting vector is computed as usual from equation 81, and
--m

equation 61 is replaced by:

A (_) ^ (_))X = X + K (Y - Y (84)
--m --m --m m m

A
where {Y ) is the measured value of the observable. Thus as the estimate

m

converges toward the actual orbit, the linearized analytical model also gains

in accuracy.

From the general nature of the foregoing analysis it can be concluded that

the recursive minimum variance navigation scheme is as versatile as it is

powerful. It is not surprising, therefore, that a variety of successful applica-

tions have been reported in the literature.

5.3 End Point Guidance With a Fixed Arrival Time (Ref. 7)

Given an observed or predicted position at a specified time and a desired

position at some later time, there are several methods of guiding the flight

to the intended destination. A thorough analysis, or even a thorough discus-

sion, of available techniques is out of the scope of this presentation. How-

ever, to provide a concrete example of linearization theory applied to

guidance, the implementation of one possible approach and the corresponding

tools for analysis will be described.

The fixed time-of-arrival (FTOA) end-point guidance law specifies that at

a given time (tA) of thrust, an impulsive velocity vector incremen 2t_0/ (fA) is

to counteract the apparent deviations from a particular desired trajectory in

order to reestablish the reference position at a specified future time tE. For
A

an observed deviation of x A immediately before the impulsive injection at time

tA, equation 19 gives the resulting uncorrected deviation at time rE:

xE(U ) = _(tE tA) A' (85)

Z_0/ The velocity impulse may be purely corrective or, more generally, may

be an adjustment to a preplanned injection command.
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which can be written symbolically as

FSR E(U)_
!

I
!

_,T (uI
o _.

[ -

(i)
_E

(3)
E

qb (4)
E

A

6V A

(86)

The apparent future position deviation at time tE

means of a corrective impulse f
--A

O31 %E (I)

• (3)
_E

m

_E (4)

such that

- A -
5R
--A

A

5VA + f_A

can be brought to zero by

(87)

It is readily seen that the predicted end point position error can be brought to

zero by a correction to the nominal injection command:

f A G I A (88)_ = x A

where the 3 x 6 guidance law matrix is defined in partitioned form as:

- - [ z));G; = - (,_E ( -1 _ (1) "1_ . E I33J (89)

This completes the illustration of the FTOA end-point guidance technique,

in which the observed state is used to determine a corrective impulse. All

that remains is a description of the corresponding statisticai transformations

of state vector deviations arising from navigation and thrust control errors:

The actual deviation immediately after thrust is:

Lo l:x+
- o --A [ XAj --A

where CA is a 6 x 1 vector composed of the vehicle state error introduced by

imperfect engine control. Since the position component of this error is zero
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for an impulsive thrust, the covariance matrix of engine error can be written
in the form:

F O33 033 ] (91)

coy {CA, CA} = LO33 P(eng)J

Using the definitions:

.._ A

x A _x A - x A (9Z)

and introducing a 6 x 6 guidance matrix to facilitate further manipulations,

(93)

equation 90 can be written as:

N

-oX=[oA+i_6]-Ax_[oqx_A_c_A {94)

Multiplying each side of this equation by its transpose and taking averages,

No:[%+ i_]NA[oA+16_1T_[oA+16_]coy{xA,xA}oA_

+cov{c_,c}

+ GA PA GAT (95)

2.1/
Since_

{^ }_ov{x_,___}--_o_cx_+x _,___:o_+_ (96)

equation 95 can be rearranged as:

= - + PA + coy A' --A} (97)_o [°_+_}[_A _][°_+_]_ {c c

[^]Z__I/ As explained in Ref. 7, the minimum variance estimate x at any time

is uncorrelated with the error [__]in that estimate.
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which is the final expression for the state vector deviation covariance matrix

after an impulsive thrust command.

6. APPLICATION OF LINEARIZED ANALYSIS TO POWERED FLIGHT

In the following two subsections a powerful technique for use in linearized

analyses of systems described by nonlinear differential equations is applied

to two problems pertaining to powered flight: guidance logic determination

and error analysis. The key to the technique is the introduction of a set of

differential equations, termed the adjoint differential equations, which are

related to the homogeneous portion of the linearized differential equations

describing the system. Manipulation of the combined sets of equations can be

made to yield valuable information applicable to both guidance law determina-

tion and evaluation of the effects of random and nonrandom errors on system

performance.

It should be noted that the problems discussed herein can be solved by

straightforward operations involving only the original set of differential

equations. The advantage of introducing the set of adjoint equations lies

primarily in the greater ease and speed with which the desired information

can be obtained.

6.1 Application of Adjoint Analysis to Guidance Law Determination

The first problem discussed is to determine a set of guidance equations

which can be used during powered flight. These equations are used to compute

acceleration commands which will move the vehicle-to the desired terminal

position even though it is initially displaced from the desired trajectory.

The solution proceeds in two steps. First, the terminal errors which

would result if no correction were made to the reference acceleration pro-

gram are estimated. (These errors are the result of the fact that the vehicle

is not on the reference trajectory.) Then deviations from the reference

accelerations are postulated which are constant over the remaining time of

flight, and the magnitudes of these deviations required to compensate for

selected components of the estimated terminal error are computed. (All

terminal state errors cannot be removed because there are in general only

half as many independent control quantities as there are state variables.)

The starting point for this investigation is the set of linearized differential

equations describing vehicle motion which have been introduced previously

(equation 20):

: [A] + [B]L {98}
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(Here the subscript m has been dropped, but all quantities remain continuous
functions of time.) Recall that x, x, and f are vectors composed of devia-
tions from the reference state and force vectors respectively, while [A] and
[B] are matrices of partial derivatives evaluated using reference values of
X and F. Throughout this discussion, x and :_ are considered to be 6 x 1
column vectors, and f is considered to be a 3 x i column vector.

Given this information, there exists a set of linear differential equations
closely related to the homogeneous part of equation 98. These equations,
termed the adjoint differential equations, are defined below (see Ref. I0):

Matrices[/_]and [A] are both 6 x 6 square matrices.

To make use of these additional equations, proceed in the following
T

manner. Premultiply equation 98 by [A] T, and equation 99 by x :

[A] T • Tx = [A] [A] x+ [A] T [B] f (lOO)

TEi] T T__ :-__[A][A] (1oi)

Transpose both sides of equation i01:

[i]T -[A]T [A]X = X (IOZ)

and sum equations I00 and 10Z:

[A]T"_x+ 5i]Tx: [A]T[B]f (103)

However,

x + x = dt

Therefore equation 108 becomes:

dt

Ref. i0

: [A] T [B] f (104)

Leitmann, G., Optimization Techniques with Application to Aero-

space Systems, New York; Academic Press, 1962, P. gl8
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The left-hand side of equation i04 is a perfect differential, so that the
integral of this expression with respect to time over the interval t = t

m

t = tf can be written:

to

tf

t
m

for

t < t <tfo m

where tf is the end time of the reference trajectory, t is the start time ofO

the reference trajectory, generally set equal to zero, and t is any time
Irl

within the indicated interval. For ease in handling, the time arguments are

indicated by subscripts as in previous sections. Thus:

m

Before the set of adjoint differential equations (expression 99) can be

solved specifically, additional information, usually in the form of initial

conditions on the matrix [A], is required. In this analysis, however,

specification of the elements of [Af] (the terminal conditions on the matrix

[A]) is found to be more useful. To understand the reason, refer to the first

term on the left-hand side of equation 106. The components of the vector x
--f

are linearized estimates of the terminal state variable deviations caused by

state deviations existing at time t and force vector deviations in the interval
m

tin< t < tf. The analytical goals are to predict the uncorrected value of _x f

(i.e., the terminal state vector deviation which would exist if f were zero),

and then to determine what constant value of f in the interval t < t < tf will

reduce the terminal deviations to zero. The first goal is most easily

achieved ilia fiT is the identity matrix [I66 ].2_2/ (The vector x f is then

22/
One is free to specify Ix arbitrary constants of integration for n first-

order linear differential equations.
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directly available from equation 106.

Af] T equation yields:into i03

Substituting the selected value of

x + [B] fat
rn --m

t
m

(107)

Note that the second goal as stated is to determine what constant value off

over the interval will reducexf to zero. Thus the vector fthat is of interest

is constant over the integration interval and can be taken out of the integrand.

This quantity is denoted f since it is the value of f computed at t = t :
--m -- rn

tf

xf =[Am] T x + {_ [A] [B] dt} f--m --in

m

(1o8)

although it would be desirable it is not possible to find a value of f that

will make all six elements of xf zero. This is obvious from examination of

equation 108, since to do so requires the inversion of the matrix:

tf

[Bm]a f [A][B] dt ,i09)
t
m

which is not square. However, if equations 108 and 109 are combined in

partitioned form, it is possible to write a third-order matrix equation from

which a value of f that will make any three elements of xf equal to zero can--rn

be determined. The appropriate partitioning is shown in equation 110:

f
--m

(110)
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where

(1) _z) (1), (z)x, , x ;x x , andf
-- --m --m --m

are 3 x l column vectors

[ A m](1) ,[A m] (Z) ,[A m](3)'[ A m] (4), [ Bml ] (1) and[ Bm](' 2)

are 3 x 3 square matrices.

1) (1)Writing the expression for x resulting from equation 109 and setting xf

equal to zero results in the following equation, which is easily solved for f

m]'3' Xm'2)J
Therefore:

--IT1

[C],i)+ f (111)
--m

T

A[Sm]= x (112.)--m

(1)
Note that any three of the six state variables can be made to appear in xf

merely by rearranging the original matrix expression, equation 98.

The matrix[A] must be known as a function of time to obtain the value of

matrix[ S] as a function of time. This matrix can be evaluated by numerical

integration of equation 99. Since final rather than initial conditions are

specified on the elements of matrix[A] , the indicated integration must

proceed backwards in time from tf toward to . Recall that[A(tf@ =[Af] is

specified to be a 6 x 6 identity matrix.
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All quantities required to compute elements of the matrix [ Sm] at any

and all times in the interval to -< t < tf are evaluated on the reference

trajectory. Hence this matrix can be precomputed and stored on board the

spacecraft. Then at any time t in the powered phase of flight, the com-
m A

manded deviations in F, denoted f , are determined from the expression:

A A

--m --m

A
where x is the vector of observed deviations in X at time t . This com-

_m _ rn

pletes the derivation of the guidance law based on adjoint analysis. This

form of guidance is seen to be a linear predictive guidance concept; that is,

the guidance law expressions (equations l l3) are linear, and control is based

on predicted values of the terminal deviations.

6.2 Application of Adjoint Analysis to Sensor Error Evaluation.

This subsection illustrates the application of adjoint analysis techniques

to the problem of evaluating the effects on performance of system errors,

which were not previously considered. The measure of performance

employed is the vector of terminal state deviations, xf. The source of error

to be investigated is the vehicle navigation sensor system which determines
the estimated value of x, denoted x, upon which acceleration commands are

based. When sensor errors are present, x is not equal to x; rather:

x = x - x (i14)

where x is the observation error vector.
m

To begin the analysis, return to equations 98, which are the linearized

equations of motion.

A

I] I]x = A x+ B _f (115)

A

Quantityf is the computed command force vector which is determined by
A

using the observed state variable deviations, x, in the guidance law which is

to be employed. In practice the actual guidance law equations can be derived

in a variety of ways, perhaps emperically, and they can be either linear or

nonlinear. However, this discussion deals with a linearized model of the

actual vehicle guidance and control system in which the guidance law is

represented by the linear matrix equation:

A-34



= S x
m

=is] {x _}
(116)

P l
where the matrix

[ SJ can be thought of as a matrix of partial derivatives

evaluated on the reference trajectory.

In addition, the components of the state vector used in the guidance law

(equation 1 16} are quite often not physical quantities which can be observed

directly on board the spacecraft. When this is the case, an additional

navigational task is to compute an estimated value of x on the basis of the
m

observed value of y_, the vector of observables, the physical quantities which

can be measured directly. Vector y is the actual deviation of Y from the

reference value. It is assumed that during powered flight, suff'_cient ob-

servables are used to allow estimation of the vehicle state at any time on the

basis of observed information available at that time. The expressions used

to perform the estimation of the vehicle state from the observables, termed

navigation equations, here, are in general nonlinear geometrical relations

and are represented functionally as:

X= g(Y) (117)

In the linearized system model the navigation equations take the form

^[]^x= G y (118)

r i
where |G| is a matrix of partial derivatives, relating deviations in X to

^
deviations _ in Y evaluated on the reference trajectory, and g = y- _ where _ is the
vector of sensor errors. Then:

^ -[] [I-x= x - x = G y- G y (119)

cl-Since x = G andx_ = G y in the linearized system, equation 118 can

be written in form:

^ []_x = x - G y (120)

Substituting equation IZ0 into 116 and the result into 115 yields:

x=[.] x-[_,] _ ,,,,,
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where

The equations adjoint to the homogeneous part of equation 1Z1 are:

Following a procedure identical to that outlined in subsection 6. 1 leads to the

following equation:

d{tA }
_ B

dt

Equation 12.3 is next integrated with respect to time over the entire trajectory,

since the error inputs of interest exist during the entire flight. If t is set
O

equal to zero, this yields:

tf

[A f] T _-f_[Ao]T --oX=- f [A] m [B'] __at (lZ4,

Asbefore,wea e,roe,ospecify,hevalueof[ A]a,some,ime,andi,is
again convenient to set[A f] equal to the identity matrix, since the terminal

deviation vector, xf, is of primary interest. This makes the terminal de-

viation vector caused by initial deviations from the reference flight path,

x , and by navigation sensor errors during flight, y, directly available from
mO

equation 124. In this particular analysis, which is aimed at evaluating the

effects of sensor errors, terminal errors caused by initial deviations are not

of interest, so that x is set equal to zero. It can be seen that this will not
_O

in any way affect the determination of sensor error effects as determined by

the integral on the right-hand side of equation iZl. The following expression

results from the preceding considerations:

tf

__f=- f [A] T [B'] }_dt (lZ5,
o
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Two types of error are of interest: bias errors and random fluctuation
errors. Bias errors are time-invariant over the performance of any single
mission but random over the ensemble of possible missions. Random errors,
on the other hand, fluctuate randomly during the course of any given member
of the ensemble of missions. It is assumed that the random components of
sensor error to be discussed are samples of white 23/stationaryGuassian noise
with zero mean values. To distinguish between the two types of sensor error,
yis thought of as the sum of two components, _b and in , representing

bias and random errors respectively.

Y--= Yb + _n (IZ6)

equal zero leads to rapid conclusion of the analysis of bias errorsLetting _n

Since Yb is constant over the mission, it can be removed from the integrand

of equation Ig5.

tf

0

I- "1

where[ Kb] is a matrix of sensitivity coefficients evaluated by performing the

integration indicated in equation 1Z7.

The analysis of random errors is more complicated, since Yn is a

randomly varying function of time. The function _n (t) cannot be known

explicitly; however, it can be described in a statistical sense. Since Yn has

been stated to be white noise, the mean squared value Of Yn is not defined.

However, each of the elements of y can be characterized by its power
mn

spectral density. The spectral density of _qn' defined as Wqn is constant

Z3/ Nonwhite noise can be .handled by assuming that the desired

spectral distribution is generated by passing white noise through a suit-

able linear shaping filter (Ref. 1 I). The shaping filter is then included

in the system described by the linearized equations of motion.

Ref. ii
Laning,

C ontr oi,

J.H. and R.H. Battin, Random Processes in Automatic

New York; McGraw-Hill, 1956.
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over the range of frequencies - m < f < + co. Also defined is the auto-
~ which is denoted R (r) and is equal to:correlation function of Yqn q

Rq(T) = av {_qn(T)_qn(t+T)} ; q = I, g.... Q (IZ9)

where Q is the total number of observables. In addition, random errors in
each of the observables are assumed to be independent; that is,

av { _pn(tl) Yqn(tz)} = 0 (130)

for p _ q and for any values of t I and tZ. Another method of obtaining Rq(T)
is the use of the Wiener-Khintchine relationship, which states:

CO

1 ejg_fT
Rq(T) = _ / Wq(f) df (131)

- O0

CO

Wqn / jZ_'f r Wqn
Z e df - Z 6 (T)

- CO

where 6(T) is a Dirac delta function atr = 0.

The preceding information is useful in the further analysis of equation 12.5
N

with --Yb set to zero:

Xfn = - /f

O

[B,] ndt (132.)

The quantity Xfn is a random variable which can only be discribed in terms of

statistical averages. It is clear that the average value of Xfn is zero, since

the average value Of Yn is zero. Of greater significance, as explained in

section 4, is the covariance matrix of Xfn which is denoted [Nf] are defined:
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I

l

i
|

i

Substituting equations 13Z into 133 yields:

tf tf _n(tl) [n(tz)T [ D(tz)] T dt 1 dtz)
(134)

where

(135)

The averaging process in equation 134 can be moved inside the integrand:

tf tf

[_f]= f f [D(tl) ] av{ Zn(t 1) _n(tz)T}[ D(t2 ) ]T dt 1 dt 2
o O

(136)

The quantity av{ _n(tl) _n(tZ)} is seen to be zero when t1

[Q (tl)], the covariance matrix Of_n, when t 1 = t2:

/ t Z and equal to

(137)

The off-diagonal terms of[ Q {tl) ] are zero by equation 130, while the

diagonal elements are given by equation 129:

I (138)

where

and

D

Wln

0
!

I
I

b

" " ° 0

W "'" 0
, Zn
| %,

o....

(139)

T =t I "t 2
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Thus equation 136 can be written (Ref. II):

tf

i "[D(t1 ][Wn][D(tll]Tdtl
O

(140)

Itis the diagonal terms of [Nf] thatare of particular interest. They

are the mean squared values of the terminal deviations of each of the state

variables. Define:

2 []_fn as a column vector made up of the diagonal elements of Nf •
th 2

p element of_fn is equal to av {(x )2 }
-- --p fn "

W
mn

asacolumn vector made up of the diagonal terms of matrix [Wn].

m

W
In

W2n

I
I

I

WQn

(141)

Subject to these definitions, it can be shown by expanding equation 140 that,

2_ IK ] w (14z)
--fn _ n_ _n

where (k q) ,p n
the general element of (Kn),is defined as:

tf
1 , 2

(kpq)n = _ _ { dpq(tl) } dt I (143)
0

th

Quantity dpq(tl)is the pq element of [D (tl) ]

t" I

Matrix _] K n ] is therefore a matrix of sensitivity coefficients which can

be used to estimate the mean squared terminal error components caused by

random sensor errors as characterized by the average power spectral density
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associated with the noise input to each sensor. The value of[A(tl) ] is ob-

tained by numerical integration backward in time from t = tf with [A (tf)]

specified to be the identity matrix. Matrix [ B'(tl) ] in equation 121 is

evaluated using the reference values of X (tl) and F (tl). Thus it can be

seen that all the information required to compute the matrix [ Kn] is avail-

able.

In conclusion, sensitivity coefficient matrices have been derived which

can be used to estimate the effects of both bias and random sensor errors

on terminal state deviations.
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APPENDIX B

MIDC OURSE PHASE

In this appendix the equations for midcourse guidance are derived. The

mathematical notations used are listed below. 1

x(t) 6-component state vector whose components are AX,
Ay _ _ -AZ

F(t)

¢ (t, to)

Iii, Oij

fij, _ij

S

a, b, c

X, Y, Z

6x6 matrix used in writing linearized equations of motion

6x6 transition matrix which relates deviations at t to dev-

iations at to

i-by-i and i-by-j unit and null matrices respectively

Components of F(t) and_(t, to) matrices

Angle between star sightline and planet center

Unit vector along star sightline

Components orS (star direction cosines)

Spacecraft position components in earth-centered coor-

dinate s

X m ,

H(t)

Ym, Z
m

Moon position components in earth-centered coordinates

Matrix relating measurement deviations to state devia-

tions

R

R

Position vector

Range

Half-subtense angle of visible disc of planet

1/This list does not include the notation used in Sections Z and 9, which in

many cases conflicts with the notation used in other sections.
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H

r

E{}

AV

P

N

G

XQ

S

S !

2
0-

k

2
(Y

K

Z
(Y

e

Z
0-

J oTJ
PLe' Bm

Co

Vector from spacecraft to horizon

Planet radius

Angle between star direction and near horizon

Angle between star direction and far horizon

Expected value

Estimated value of x(t)

Error in estimate of x(t)

6-vector, whose three position components are zero and

whose three velocity components are the errors in meas-

uring the velocity correction

Covariance matrix of estimation errors

Covariance matrix of deviations from the nominal trajectory

Matrix relating corrected state to estimated state

Error in implementing the velocity correction (6-vector

whose three position components are zero)

Subsidiary variable in Section 4; 6x6 covariance matrix of

velocity correction errors in Section 5

3x3 covariance matrix of velocity correction error

3-vector consisting of errors in implementing velocity

corrections

Variance of errors in magnitude of applied correction

velocity

Variance of errors in percentage thrust error in velocity
corrections

Variance of errors in timing of correction thrust

Variance of errors in pointing direction of velocity cor-
rections

Magnitude error in applied correction

Gravitational constants of earth and moon

Angle from moon's ascending line of nodes to the earth-
moon line at t

O
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T

K(t k)

Q

ki

Z
o-

Z

a R

V

A 1(tk),

G'

U, AV

r

v

r

v

2;AV

T(t k)

r t

v t

M

Vs

Z_t

R L

0-

Az(t k)

Orbital period of moon

Inclination of lunar orbit plane to earth's equator

Weighting vector

Measurement variance

Standard deviation of reference point error on earth (kl)

and moon (kz)

Variance of optical instrument errors

Variance of ranging errors

Covariance matrix of velocity corrections

Upper 3x3 submatrices of _ (tA , tk) (Section 6)

3x6 matrix relating state deviations to correction com-

mands

RMS correction velocity

RMS position deviation from nominal

RMS velocity deviation from nominal

RMS position estimation error

RMS velocity estimation error

Total of rms correction velocities in flight

Target uncertainty at t k

RMS position uncertainty at target

RMS velocity uncertainty at target

Rotation matrix from XYZ coordinates to downrange-

cros srange-altitude coordinates

Angle measurement error

Magnitude of spacecraft velocity

Error in timing a measurement

Range from spacecraft to some surface reference point

Angle between sightline to reference point and vehicle

velocity vector

RMS measurement error due to timing, landmark, and

instrument uncertainties
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e

x(t)

_n(t)

w(t)

u(t)

V (t)

w(t)

M(t)

W

A 1 , A z

Rem

A_x m,ARem,A_xe

_Xm

a, d, c

r

--e

e , e , e
x y z

e , e , e
a d c

M !

v

--e

RMS errors due to timing, instrument, and landmark

unc er taintie s

Matrix of partials of vehicle accelerations with respect

to astrodynamic constants

3-vector of astrodynamic uncertainties

Measurement vector

Noise on each measurement

State of dynamic measurement noise process

Gaussian input to noise process

Matrix relating state of noise process to measurement

noise

Matrix related to noise process

Augmented state vector, composed ofx(t), e(t) andw(t)

Refers to augmented matrices and vectors in general

Matrix which relates observations to augmented state

vector

Transition matrix of noise process (Section 8)

Time constants of measurement noise

Earth-moon distance

Errors in astrodynamic constants

Error in estimation of moonls state (in earth coordinates)

Error in estimation of vehicle state after transformation

in lunar coordinates

Unit vectors in coordinate system defined by nominal

altitude, downrange, and crossrange directions at

periselenum

Position error 3-vector at periselenum

Components of r in X, Y, Z directions
--e

Components of r in a, d, c directions
--e

The 3 x 3 matrix required to rotate position errors

from XYZ coordinates into adc coordinates

Velocity error 3-vector at periselenum
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E Periselenum error 6-vector composed of r and v
--e --e --e

P
a

P matrix in adc coordinates

1. COMPUTATION OF TRANSITION MATRICES

In this section the computation of the transition (_) matrices is derived.

These transition matrices relate state deviations at some time (t) to state
deviations at some initial time t

O

In paragraph 2.3. I. 2 of Volume III, the linearized equations of motion

are written in matrix form:

__(t) = F(t)_x(t) (1)

wherex(t) is the 6-vector of state deviations (AX, Ay ........ AZ).

It is well known (Ref. 1) that the solution of equation 1 is given by:

_x(t) =_(t, to)X(to) (z)

where,(t, t ) is the 6 x 6 matrix defined by:
O

de(t, t )
O

dt = F(t)¢(t, to) (3)

where

(t o t ) =' o I66

for all t
O

(4)

Writing equation 3 in expanded form,

II

21

¢
12 ¢16

m

i

fl 1 f12 - - "

f21

m

f61

f16

f66

X

9 9
11 12

6
21

961

916

n

966

Ref. l.Bellman, R. E., Introduction to Matrix Analysis, New York:

McGraw-Hill, 1960.

(5)
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where

_B (0) = 1
11

4,22(0) = 1

l
I
l
I

l

_66(0) = l

_ij(o)= o, i = j

Writing out equation 5,

(6)

l l = f _ + f _ + .... f (7)11 11 lZ 21 16_61

_Zl = f _I + f + - - f _62.1 1 22_21 26 1

= f _ + f _ + f _61_61 61 11 62 12 66

where _11 (0) = 1 and _ 1_(0) = 0 for j # 1. Simultaneous solution of equation

7 with these initial conditions will yield the quantities _ ll' _ Z1 - _61"

The other five columns of the matrixO(t, to ) can be generated in similar

fashion, except that for the second column, _22(0) = 1 and _2j (0) = 0 for

j _g and so on.

It should be kept in mind that the elements of the F(t) matrix (fij) are in

general time-varying, since F(t) is given by

B-6



0

0

F(t)= 0

0fl/0x

0fa/0x

0fs/O x
L

m

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

_f 0f 1
I/0 y /0 z 0 0 0

c) f c)f 0 0 0
Z/Oy zl0z

af 3 0 0 0f3/0 y /0 z
m

where the partials Ofl/_x'

(8)

etc are evaluated along the reference trajectory.

Thus, in the computer program used in this study, each column of the cI_

matrices was developed by simultaneous solution of both the linearized equa-

tions 7 and the nonlinear differential equations of motion (equations 84

through 86).

2. APPLICATION OF KALMAN'S RESULTS TO SPACE NAVIGATION

In paragraph 2. 3. 1. 3 of Volume III, it was stated that equations 2-2.0

through 2-2.2 were solutions to the problem of making a minimum variance

estimate of a trajectory based on noisy observations and an initial estimate.

It was stated that these equations were Kalman's. However, since the exact

problem formulation and notation used by Kalman in Ref. 2 and that used in

this report (and Ref. 3) are different, this section presents a precise deri-

vation of equations 2-20 through 2-22 in order to bridge the notation gap.

Kalman's results are as follows. Given a dynamic model represented by

the following equations:

_x(t+ 1) =_(t + 1, t) x(t) + u(t_) (9)

_y(t) = M(t)x(t) (1O)

where u(t) is an independent Gaussian random process of n-vectors with

zero mean, x(t) is an n-vector, _y(t) is a p-vector (p_n), cI_(t + 1, t) and M(t)

are n x n and p x n matrices respectively whose elements are nonrandom
functions of time.

Ref. 2
Kalman, R. E. , A New Approach to Linear Filtering and Prediction

Problems, Jour. of Basic Engr., March 1960, pp. 35-45.
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Given observed y(t o) ...... _y(t), find the estimate_x (t l/t) ofx(tl) which

minimizes the expected loss. The results derived in Ref. 2 in equations 21,

28, 29 and 30 are listed below.

+ L + I { +x"lt + 1 t)= • (t + 1 t)x"lt t- 1)+ A (t)ylt) (11)

+ [ + ]_1A *(t)= ¢ (t+ 1, t)P (t)M' (t) M(t)P (t)M' It) (IZ)

.... :'(t)M(t)"(t + 1, t)= • (t + 1, t)- A (13)

' * P*(t) 'P';'(t + l) = _P (t + l, t) _ it + l, t) + q(t) (14)

where q(t) = E {u(t)u'it)}

Also, as Kalman shows, P* can be written

-, [ ' IP"<(t + l) = _P (t + 1, t) P*(t) - P'_(t)M (t)(M(t)P*(t)M' (t))- 1 (15)

times P*(t)M(t)] _ '(t + 1,t) + q(t)

Equations ii through 15 are all written in Kalman's notation in which

(') is a transpose and x _:-"indicates the optimal estimate of x. Converting

this notation to that used in paragraph Z. 3. I. 3, of Volume III where ( )T

denotes a transpose, Ax an optimal estimate, and denoting the observation

times tk, tk_l ..... etc,

= t t k _ ) + A (tk)Y(t k) (16)ax(tk + 1 tk) _ (tk + l k )x(tk 1
-1

T M(tk)P* TA ':<(t k) = _ (t k + 1, tk)P'l<(tk )M (tk) ( (tk)M (tk) } (17)

= t k) - A (tk)Mltk) (18)(tk + 1,tk) _ (tk + 1,

* ( * -. * MT(tk) I M * MT(tk)l -1P (tk + 1 ) =¢(tk + 1 ,tk) P (tk) - P (tk) (tk) P (tk) (19)

$
_J(tk , + a(t k)times P (tk) M(t k) + 1 tk)
J

Ref.
Srnith, G. L., S. F. Schmidt, and L. A. McGee, Application of

Statistical Filter Theory to Optimal Estimation of Position and Vel-

ocity on Board a Circumlunar Vehicle, NASA Ames, NASA TR R-135,

1962.

B-8



Now, define the following:

Kit k) = P*(tk)MT(tk) ( M (tk) P*(tk)MT(tk) }-I

Substituting into equations 16 through 19,

(20)

* tk)A_X(tk, t _ l) + _ (t k K(tk)_Y(tk)AX(tk+ 1 ]tk ) = _ (tk+ 1, k + 1, tk) (21)

A*(t k) = • (tk+ 1,t k) K(t k) (22)

(tk+ 1,tk) = _ (tk + 1,tk) - (tk+ 1,tk)K(tk)M(tk)

* [ * ]_T(t kP (tk + 1 ) = _ (tk + 1, tk) P*(tk) - K(tk)P (tk)M(tk)

(23)

+ 1, tk) (24)

+ Q(t k)

Now equation 23 can be substituted in equation 21, and equation 22 is no

longer necessary, so that:

=[ t,_0 tk,K,tk,M,tk,] ,tltk_,,--Ax(tk+ 1 Itk) q) (tk+ 1, k (tk+ l,
(25)

+ _ (tk + 1, tk)K(tk)Y(tk)

K(t k) = p (tk)MT(t k) M(tk)P*(tk)MT(tk

* (p* * ) TP {tk+ 1 ) = _ (tk+ 1,tk) (tk) - K(tk)P (tk)M{tk) _ (tk+ 1

+ Q(t k)

(26)

t ) (27)
, k
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Rearranging equation 25,

--Ax(tk+I { tk) = ¢ (tk+ l, tk)AX(tk { tk- I) + ¢ (tk+ l,_ tk)K(t k) [ Y(tk) (28)

The transition matrix _ (tk+l, t k) is used to translate the optimal esti-

mate _Axfrom t k to tk+l. Therefore the optimal estimate of x (t k) including

the observation at t k is given by

A_x(tk Ax{tk %)[ 2 - I )]

_A ) = ¢ t 1 )Ax(tk-1Since x(tk {tk_ 1 (tk, k- { tk-1)

Ax{tk {tk) = _ (tk, tk-1) hx(tk 1 {tk- ) (30)

+ K(t k) [ Y(tk) - M(tk) '(D (tk, tk_l)_(tk_l I

Equations 26, 27 and 30 specify the recursion process. Letting

A

_x (tk/t k) be denoted by_Ax (tk) and writing equations 26, 27, and 30 in terms

of the "augmented" state notation used in paragraph Z. 3. I. 3, Volume I/I:

• )Ax,A_x*(tk)= ¢ (tk, tk_ 1_ (tk_ 1) + K*(tk) {Y(tk) (31)

_M(tk) (_ , (tk, tk_l ) Ax (tk_ 1 )

* * T * T -

K (t k) = P (tk)M (t k) { Mltk)P (tk)M (t k) } (32)
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P (tk+ 1) = • (tk+l,t k) (t k) -K(tk)M(tk)P (tk) } ffpT(tk+l, tk ) (33)

+ Q (tk+l, t k}

t

* , =/k+_n(tk+l,tk) _" {an( _)uT } nT%+l,
Q (tk+l tk) tk --n (T) • tk)dT (34)

3. DERIVATION OF RELATIONS BI_TWEEN STATE VARIABLES AND

OBSERVABLES

In this section the relations between the state variables X, Y ..... Z and

the observables are derived for various types of measurements.

3. 1 Angle Between Planet Center and Star Direction

Figure 1, illustrates the situation in which each observation consists of

the measurement of the angle _ between some star direction and the center of

the earth or moon.

When the angle _to the center of the earth (_e) is measured and the

measurements are being referenced to an earth-centered inertial coordinate

system, then H, the matrix of partials of _ with respect to the state vari-
e

ables is developed as follows:

e e 0 0 0 (35)
H =L_ _y _

Let R = Xi + Yj + Zk be the position vector of the vehicle in earth co-
_e

ordinates and S = ai + bj + ck be the unit vector representing the star direc-
tion.

Then

= cos = cos (36)
e ell
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i_(y)
STAR DIRECTION

S :ai+ bj+ck

SPACECRAFT ( X,Y,Z )

Re _m

EARTH (O,O,O,) i (x)

k (z)
(Xm,Ymq Z re)

1750E-VA- 122

Figure 1. Geometry of Earth-Star Measurement

-1
= COS

e -aX + bY + cZ) -i
: COS d

R e
e

O_e

#x

1

l_d Z
e

(37)

(38)
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Therefore

_e _

0X

aR + Xd
e e

2 2
R _l -d

e e

O_e _

0Y

bR + Yd
e e

2R -d
e e

cR + Zd
e e

OZ

d 2R
e e

(39)

where

d
e

and

R
e y2 j+ Z 2

(40)

Equations 39 and 40 also apply to the case of angle measurements from a

star to the moon in a lunar coordinate system, except that the quantities sub-

scripted by e in equations 39 and 40 are referred to the moon instead.

When a moon-star angle
m

versa}, let

is referenced to earth coordinates {or vice

- R = (X - X) i+ (Y - Y)j+ (Z - Z) k (41)
--vm m -- m m --

where X Y
m m

system. Then,

S : ai+ b_/ + ck,

and Z are the coordinates of the moon in an earth-centered
m

proceeding as before, with the star direction defined by
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_m aR + (X- X ) d
_ vm rn vm

@x
2 2

R _l-d
vrrl VlTI.

bR +(Y-Y )d
vm rn vrn

2R -d
vm vm

cR +(Z-Z )d
_m - vm m vm
_Z

2Jl d 2.R
Vm vm

where

J

a (X- X )+ b (y - y ) + c(Z - Z )

d = _ m m m
vm R

vm

and

R :_/(x x )z _ )z _ )z- + (Y Y + (z z
vrn m m m

(42)

(43)

The case of an earth observation referred to lunar coordinates is similar,

of course, to equations 41 and 42.

3.2 Direct Range Measurements

For direct range measurements,

H = [_ aYOR 0z_R 0 0 0]

the H matrix is given by:

(44)

For an earth range measurement in earth coordinates,

JX z ZR=R = +Y +Z
e

(45)

_R /_X = X/R
e e

@R /aY = Y/R
e e

_R /0Z = Z/R
e e

(46)
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The results are identical in lunar coordinates.

3.3 Range Rate Measurements

For a system employing range rate as the observable, the H matrix is

given by:

oi oh, oi oi oh, oi ]H = Yf _ oz og o--f-o-f- (47)

y2 Z 2Since R JX 2 + + (48)

and R =

OR " "X XR

XX + YS( + ZZ

C]X R 2
R

c]Y Y/_
C]R R 2

0R Z ZI_

0---Z- = R R _-

R

c]i/c]i = X/R (49)

c]R/c]'Y = Y/R

c]fa/c]{= z/a

3.4 Optical Ranging by Measurement of Planet Disc

By measuring the apparent size of the planet from the spacecraft, range

can be determined. In figure g the range is given in terms of 8, the half-

subtense angle, by

r

R - sin O (50)

[_)R OR OR 0 0 0]Then H = -_ c]Y c]Z

c]R/ax = X/R

C]R/C]Y = Y/R

C]R/c]Z = Z/R

and the partials are given by equation 46.

(51)
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1750E-VA- I_$

Figure 2. Planar Geometry of Star Horizon Angle Measurement

If the observed angle @ is used directly, then H=[ _@/_X _@/_Y _@/_Z

0 0 0] and since O = sin -I (r/R),

oe/ox _ - x

_R (R 2 - r 2)

-y
_o/OY =

_R(R 2 - r2)

-Z
,_e/o z =

_R(R 2 - r 2)

(52)

3. 5 Star-Horizon Measurements

One way of measuring the angle between some star direction and a ref-

erence point on the earth or moon is to measure the elevation angle of a

star above the horizon of the planet. This type of measurement is

B-16
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illustrated by _h in figure 35. The figure shows that the star horizon angle

is equal to the difference between the angle _ and the half-subtense angle

0; i.e.,

_h = _ - 0 (53)

From equations 37 and 50

-l(aX +bY +cZ)_ sin-lQR )_h = cos R -- (54)

Letting H = [O_h/OX a_ h/OY O_h/OZ 0 0 0] ,

determined by differentiating equation 52:

the components can be

ax -ax ax

From equations 39, 40, and 52, the partials are derived:

(]_h aR + Xd X

ox - R2l /fi&_d2+JR(R2_r2)
wher e

d = - (aX+bY +CZR )

(55)

(56)

If the angle from a star to the far horizon,

as above, is used, then equation 54 becomes

rather than the near horizon

gh = g + 9 (57)

and succeeding equations are modified accordingly.

4. EFFECT OF VELOCITY CORRECTIONS ON ESTIMATION AND DEVIA-

TION STATISTICS

It was shown in paragraph 2.3.2 of Volume III that the covariance

matrices, P, N, and V, representing the statistics of the errors in estimate,

the deviations from the nominal trajectory, and the velocity correction com-

mands respectively, are used to describe the average performance of the

midcourse guidance system. Equations 2-45, 2-27 and 2-28 of Volume III

show the computation of P and Nwhen no corrections are made. In this

B-17



appendix the equations which statistically describe system performance when
a correction is made are developed.

The changes in estimation errors are simplest to derive and will be
treated first. The covariance matrix of estimation errors is defined:

P_E{-_x;T}
~ A

where x = x - x,

state.

(58)

A
x is the estimated state deviation vector, and x is the true

Letting P be the covariance matrix of estimation errors after a correc-
c

tion has been made, then

_c=_{_x+_v__x+_v__} _-_
where A_'is a 6-vector whose three position components are zero, andwhose

velocity components are the errors in measuring the velocity correction.

Then

_=_{xx_+_{__}+ _{;_v_}+_{;v_v•} _0_
Assuming that the errors in measuring the velocity corrections are un-

correlated with the trajectory estimation errors, then

(61)

and P = P +
c

where C = E A=v A-_T is the 3 x 3 covariance matrix of errors in measuring

the velocity correctlon, where _v is the 3-vector consisting of the velocity

components of _v.

The covariance matrix of deviations from the nominal trajectory is de-

fine d a s

_:_{xx_} c_
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After a velocity correction has been made,

x =x+GAx+x
--C -- -- -Q

the vehicle's state is given by

(63)

A

where Gx is the commanded velocity correction, based on the estimated
^ --

statex, andxQ is the error in implementing the correction. After a cor-

rection the covariance matrix of trajectory deviations is given by

Nc : E{(x + GAx_+XQ) (x_ + GAx__+XQ) T} (64)

T xAxTGT TNc = E xx +__ +__ + GxAxT_ + GxAxAG__T + GAxxQ +XQx_T (65)

^ TGT T+__Q.._ +_Q }

In this study it was assumed that the errors in making the velocity cor-

rections were uncorrelated with the trajectory deviations so that the expected

values of crossproduct terms in equation 65 involving XQ are zero. This

assumption, borrowed from Ref. 4, is not necessarily true, since the vel-

ocity correction errors should depend upon the velocity correction magni-

tude which in turn depends on the trajectory deviations. At any rate, the

effect of eliminating these small crosscorrelations is small, and equation
65 is written

_c:_+_{m_°'r o_oT}+__ + GAxx T + __ S (66)

wher e

(x ls== s,j
where S' is the 3 x 3 covariance matrix of errors in applying the velocity

correction. (See equation 84, this section, for computation of S'. )

Ref. 4

McLean, J. D., S. F. Schmidt, and T. A. McGee, Optimal Filtering

and Linear Prediction Applied to a Midcourse Navigation System for

the Circumlunar Mission, NASA Ames, NASA TR D-1208, March

1962.
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In order to reduce equation 66, the following derivation will show that

In itissho nthatif :x+  orxthen:0
Then E __ = 0. Now, for x = x - x,

Also,

But

Since

then

and

Similarly

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)
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Substituting equations 68, 73, and 78 into equation 66

N = N + E(N - P)G T + G(N - P) + G(N - p)GT] + S
C

(79)

T
N + G) (N P) + G) + N + Sc = (I66 - (I66 (80)

which is the form used in this study.

In order to complete the derivation of the change in the covariance matrix

N due to velocity changes, S', the covariance matrix of errors in implement-

ing the corrections must be developed. In Ref. 5, subsection 5. 2, it is

shown that the covariance matrix of errors in implementing the velocity cor-
rection is as follows:

S' = E(_:Qx_QT} 2°"_2[u2133=CrkV+ - V]
-y-

(81)

2 2

where 0-k and 0- are the variances of the magnitude and pointing error

respectively, V = E ( Av Av T} is the covariance matrix of velocity correc-

tions, and u 2 is the trace of V.

Equation 81 lumps all sources of magnitude error together. If the ve-

locity correction scheme involves thrusting with a fixed-thrust rocket engine

for a certain period of time, however, then velocity correction magnitude

errors will be due to two sources: an error in the applied thrust magnitude

and an error in the time for which the thrust is applied. Mr. Gerald Smith

of Ames Research Center suggested a method of revising equation 81 to

account for the two possible sources of error in velocity correction magni-

tude.

Ref. 5

Battin, R. H.. A Statistical Optimizing Navigation Procedure For

Space Flight, ARSJ, Vol. 32, No. Ii, Nov 1962, pp. 1681-1696
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In equation 8I,

magnitude; i. e. ,

.

_k is the variance of the error in velocity correction

Letting

(8Z)

where _is some error in timing the thrust andixQTlis,,--

I !

magnitude, then

((l l_k =E Q =E T + = K +

an error in thrust

2 2

where _K is the variance of the thrust magnitude errors while _ is theE

variance of the thrust timing errors, assuming e andlXQTlare uncorrelated.
_ g

Substituting equation 82 into equation 81, we arrive at the velocity correction

error formulation used in this study.

2 2

S / = +_ V +_ u 133 - V

u 2
(83)

5. EQUATIONS USED IN COMPUTER PROGRAMS

All the equations used in the three midcourse guidance computer programs

are listed here.

5. 1 Nominal Trajectory Program

This program is used to generate the nominal trajectories by numerically

integrating the following three equations:

_ _e X _m _m Xm

R 3 R 3 (X - Xm) R 3

e vm m

(84)

B-Z2
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Me Y _m (Y - Ym ) _m Ym

- a 3 R 3 R 3 (85)
e vm m

Z i,_m t.Lm Z"" IJ'e m
Z = (Z- Z ) (86)

R 3 3 m 3R R
e vm m

and_ are the gravitational constants of the earth and moon andwhere _xe m

X, Y, Z and X , Y , Z are position coordinates of the space vehicle and
m m m

moon in an earth-centered cartesian coordinate system. R , R and R
e vm m

are distances defined by

%/X2 2 2a = + Y + Z (87)
e

R =JX 2 y2 Z 2+ + 188)
m m m m

a =_/(x x )2 2 2- +(Y-Y ) +(z-z ) (89)
vm m m m

The moon's revolution about the earth (assumed circular) is described by

[2_r (t - tQ) ]x = R cos + q_o (90)m m T

:o,,o]Y = R sin + cos qb (91)
1T1 m

2=(t- t ) _o]Z = R sin o
m m T + sin qb (92)
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where R is the earth-moon distance, 4 is the inclination of lunar orbit to
m

the earth's equatorial(XY) plane, T is the lunar orbital period, and qJo is the

angle from the moon's ascending line of nodes to the earth-moon line at

t = t (time of injection into the lunar midcourse trajectory).
o

The initial conditions required for solution of equations 84 through 92 are

X Y Z )( Y Z and _b and the constants required are _e' Iz , T,
o, o, o, o, o, o, o . , . m

4, and R • The quantities X, Y, Z, X, Y, Z, X , Y , Z , X Y
m m m m m, m,

R R and V _/_X Z= + + Z are printed out at 6-minute intervals.
2

m, e, vm, e

In addition, the position and velocity of the vehicle in moon-centered coord-

inates are printed out using the following equations:

X =X -X "_
vm m

y =Y-Y
vm m

i l

I i

I i

I i
I

vm m

(93)

V_2 2 2R = +Y +Z
vm m vm vm

/2 2 .2
V = +Y +Z
vm vm vm vm

(94)

5. 2 Transition Matrix 15rogram

The transition matrices_(t k, tk_ I) are the matrices which relate devia-

tions from some reference trajectory at tk to deviations at tk_ I. The

transition matrix is the 6 x 6 matrix shown in equation 95.

"411 41Z - _ _ 416 -

466_

(95)
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.th

where _ij is the change in the i deviation component at tk caused by a unit

deviation in the component at tk_ I The elements of equation 95 are gen-

erated by simultaneous solution of the following set of linear differential

equations :

X1 =X4

X 2 = X 5

X 3 = X 6

i_4 = (c)fl/C)X)X 1 + (Ofl/aY)X Z + (Ofl/OZ) X 3

X 5 = (afz/aX)X I + (afg/aY)X Z + (c)fz/aZ)X 3

X6 = (af3/aX)Xl + (af3/aY)mz + (af3/az)x 3 (96)

In equations 96 the partial derivatives are time-varying and are referred

to the nominal trajectory described in subsection 5. i, so that the elements

of the_matrix in equation 95 are generated by simultaneous solution of equa-

tions 96 and 84 through 86 over each 6-minute interval (tk - tk_l), using unit
and zero initial conditions as described in Section I.

5.3 Statistical Program

The computer programs just described are used to generate input infor-

mation for the statistical program, which in turn is used to analyze various

guidance systems• The inputs provided by these programs include the

position and velocity of the vehicle in both earth and moon coordinates and

the position and velocity of the moon in earth coordinates. Also, the cI_

(transition) matrices just described are provided• Other inputs to the sta-

tistical program include (i) the guidance schedule, which is a list of times

at which corrections and observations are made and the types of observations

and (Z) the rms errors in implementing the corrections and observations•
J

The three basic quantities used in the statistical program are: P, the

covariance matrix of estimation uncertainties; N, the covariance matrix of

deviations from the nominal trajectory; and V, the covariance matrix of
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velocity corrections. Initially P = N is an input to the computer program.
o o

Thereafter the change in P over a period when no velocity corrections are

made is given by

P(tk+l ) =¢(tk+l, tk)[P(tk) - K(tk)H(tk)P(tk)]_ T (tk+ 1, tk) (97)

In equation 97, the operation*(tk+ l, tk) [ ] q_T(tk+ l, tk) indicates the

change in P over a period when no observations have been made while the

quantity in the brackets shows the reduction in P due to taking a measure-

ment at t k.

The equation for K(tk) is as follows:

Z

K(tk) = Pl(tk)H1 (tk)[Hl(tk)Pl(tk)HT(tk) + Q(tk)] 1 (987

Q(tk) is the measurement variance, defined later, where Pl (tk) is the

upper left-hand 3 x 3 position submatrix of P(tk) and H 1 (tk) is the row vector,

°%z]

for optical angle measurements.

For an earth-star angle measurement, the partials are:

(99)

0 _ aR Xd
e e+ e

c?X -

0 _.
e

w

OY

R2_l_ d 2
e e

bR + Yd
e e

R2%_ _ d 2
e e

(100)

e

Oz

cR + Zd
e e

R2_l _ d2
e e
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where

de =_ (_aX +bY+CZ)R
e

(101)

and

/2 2 2
R

e =%/X + Y + Z (102)

where a, b, and c are the star direction cosines (program inputs) and X, Y,

and Z are the coordinates of the vehicle's position on the nominal trajectory

at tk.

For a moon-star angle measurement, the partials are:

_)_m aR + (X - X ) dvm m vm

0X d2
m

a_ bR +(Y-Y )d
m vm m vm

_Y
B

vm

O_ n cR +(Z- Z )dvm m vm

aZ -

R 2 _l - d 2
vm vm

(103)

where

d
vm = _{a(X - Xm) + b(Y - Ym)Rvm+ c(Z - Zm) (104)

and

R =jX - X )
vm m

2 )2 2+(Y- Y +(Z- Z ) (105)
m m

where the quantities X, Y,

nominal trajectory at tk.

Z, X , Y , Z
m m m

are again evaluated from the
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The measurement variance on a star angle measurement is given by:

1z (io6)
Q(t k) = 0- (tk)

Z
where 0- is the instrument accuracy,

range to the planet from which the measurement is being taken at tk.

and k. are program inputs.
1

k. is a constant, and Ri(tk) is the
i 2

(7

Equations i00 through 106 are for the optical angle measurements.

range measurements, the Hl(tk} vector is given by

For

 iitk,:[xYz]
R R R t

k

(lO7)

where R is the range from the planet to which the range is being taken. The

variance of the range measurements is given by

Q(tk } = 0-2+ (kiRR)Z (108)

where 0- and kiR are program inputs and R is the range to the planet in-
volved inR the measurement.

The equations up through I08 complete the computations required to gen-

erate the matrix P(t k} over periods when no velocity corrections are made.

The matrix N over this same period is simply calculated:

N (tk+ 1) = • {tk+l, t k) N {t k) _T(tk+l, t k) (109)

When a velocity correction is made at t k, then V, the covariance matrix

of velocity corrections, is given by

T
G' G'

V(tk) = (tk) N (tk) (t k)
(110)

where

-l

G'(tk) = [A 2A1 (ta, tk) I33]
(111)
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where A 2 (tk) is the upper right-hand 3 x 3 submatrix of _ (t J

a

is the upper left-hand 3 x 3 submatrix. Also,

tk) and A 1 (tk)

(t a, t k) = _(ta, ta_l)_ (ta_l, ta-2) ---_(tk+ 1,t k) (112)

The change in N when a correction is made is as follows:

Nc(t k) [I66 + G] (N P)[166+G] T= - + P + S (113)

where all quantities are evaluated at tk before the correction is made, and S

is the covariance matrix of errors made in applying the correction:

i:330331S(t k) =

C 33 s/(tk)

2 2

SI(tk) = k + V(tk) +

2 2 2

where u is the trace of V{tk). - and Ck ' ¢ and ¢E y

(114)

(115)

are program inputs.

In this computer program it was assumed that the velocity correction was

not separately monitored, so that the uncertainties in applying the correction

are equal to the uncertainties in estimating the correction. Thus when a

velocity correction is made at t k, the P matrix is incremented as follows:

Pc{tk) = P(t k) + S(t k) (116)

Equations 84 through 116 are used to determine the P, N, and V matrices

throughout the trajectory. Operations which are performed on these matrices

include the following:
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r =JT r (N 1) "_

v :%//_ r (N 4 )

v

u= v --

(117)

where Tr indicates the trace of a matrix, and N 1 and Pl are the upper left-

hand 3 x 3 submatrices of N and P respectively, while N 4 and 1°4 are the

lower right-hand 3 x 3 submatrices. In equation 117, r and v are the rms

deviations in position and velocity from the nominal trajectory, while _ and

are the rms estimation errors, and Av is the rms velocity magnitude at each

correction. In addition to these five quantities, the predicted target error, T,

is computed as follows:

T(tk ) = • (ta, tk) p (tk) _T (ta, tk) (I18)

and

r t = /_(TI) (119)

v t =%//_(t 4)

The quantities P, r, v, T, r t, v t are computed before and after each obser-

vation and correction and at periselenum. In addition, R, r, and v are com-

puted after each observation and correction and at periselenum. V and _v

are computed at each correction.

In addition to the operations mentioned, the following transformation on

the periselenum error components is done:

PG = MP(ta )MT

N G = MN(ta)M T

(120)
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where M =
033

033 M'

(Izl)

and M t =

X/R Y/R Z/R

#/R

x -Yx
RV RV RV

t
a

(iZZ)

where the components of M ! are evaluated at t on the nominal trajectory in

moon-centered coordinates. (See equations 93aand 94.)

6. EFFECT OF MEASUREMENT TIMING ERRORS

The effect of errors made in timing the optical observations was not in-

cluded in the computer program used in this study. However, the following

analysis will show the approximate upper bound on timing errors, which

is insignificant compared to other guidance system errors.

In figure 3, the geometry of an error in timing a measurement to some

landmark is illustrated. The maximum angular error caused by the timing

error is given by

1 / VsAt sin _ h V At sin E

- ~ s (IZ3)
A[_= tan _" - VAt cos = R

S S

where V s is the spacecraft velocity, At is the error in timing the measure-

ment, R L is the range to the reference point, and _ is illustrated in the

figure.

Obviously the closer the range R , the greater effect timing errors

have. Thus, two time-points are of Sparticular interest: 69 hours, which is

the last observation before the final correction on the standard schedule and

71.8 hours, which is the final observation before periselenum. Using values

of R , V , and _ from the standard 7Z. Z-hour trajectory and solving equation
123 st 69Shours and 71.8 hours,

A_ (69.0) = 3.04
sec of arc "_

sec of time

sec of arc

sec of time
A_ (71.8) = 312

(IZ4)
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Rs V s

REFERENCE POINT

175OE-VA-124

Figure 3. Geometry of Timing Errors

Since the errors caused by landmark, timing, and instrument uncertain-

ties are independent, the rms measurement error, _ , is given by

Jo- 2 2 2
_ = L + _I + _T

At 69.0 hours, the rms angle measurement error caused by 0.8-kilo-

meter landmark uncertainty is _ = i0 arc seconds. For a l-second rms
L

timing accuracy, _T = 3 arc seconds (from equation 124), and assuming a
10-arc second instrument error,

N/_2 2 2= + 10 + 10 = 14.45 arc seconds

Since the landmark and instrument errors alone yield a total error of

14.14 arc seconds, it can be seen that a timing error of 1 second will have a

negligible effect on miss distance and fuel consumed, as these quantities

are affected only by operations before the third correction at 70 hours and

the case examined (t = 69 hours} is a worst case.
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The observations after the third correction, which strongly influence the

estimation errors Y and V, are much more sensitive to timing errors. Cal-

culations like those above, but at t = 71.8hours instead of 69.0 hours, showed

that 0.1 second accuracy is required to reduce timing errors to negligible

importance.

7. BIAS AND ASTRODYNAMIC ERRORS

In formulating the computer program used in this study, it was assumed

that exact astronomical constants were available, and that the measurement

errors could be represented by Gaussian-distributed errors which are un-
correlated from one measurement to the next. This error model is not

necessarilya good representation of an actual physical system, however,

since it is expected that systematic errors such as those caused by astro-

dynamic uncertainties and instrument bias will be present.

It was indicated in paragraph 2.4.5 of Volume III that systematic as well

as random errors could be accounted for in actual system by implementation

of the minimum variance technique, using the so called augmented state

vector which includes not only the six components of trajectory deviations

but also components pertaining to each of the error sources. The process

by which this is done is shown here.

Assume that in addition to uncorrelated random noise on each measure-

ment, there is also some time-correlated noise. In addition, there is some

uncertainty in the astrodynamic constants. Assuming some uncertainty in

and R (earth gravitational constant, lunar gravitational constant,_e' _ m' em

and earth-moon distance), the equations of motion can be written:

= fl R t)(X, Y, Z, _e, _m' era'

= fz (X, Y, Z, _e' _m' Rein, t)

"Z = f3 (X, Y, Z, _e' _m' Rem, t)

(lZS)

Taking a first-order Taylor series expansion about the reference trajec-

tory and nominal values of _e' _m' and R , the perturbation equations are
of the form em

,, = ,,x + ,, Y +

\0 e) AP_I

6fl

_fl )+ _--_em ARem

(126)
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where &Y and Ai are similar in form,

f2 and f3 respectively.

Ax, &y, &z, A_, Ay,

AVe, AVm and Rein '

form:

except that the partials relate to

Defining x(t) as the 6-vector whose components are

Az and e as the 3-vector whose components are

the perturbation equations can be written in matrix

(1Z7)

where
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F(t)=

E(t) =

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0f I 0f I Of I

ax oY o'--_ 0 0 0

c]f2 af2 O f2

O---X--aY a--E- o o o

@f3 0f3 Of3
0 0 0

OX @Y OZ

0 0 0

0 0 0

0 0 0

af 1 Of 1 Of 1

O_e O _m 0 Rein

Of 2 Of Z Of 2

O_ e O _ m ORem

0f3 Of3 c]f3

O_ e @ _ m ORein

(128)

(iZ9)
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where the partials in F(t) and E(t) are evaluated from the reference trajec-

tory at time t.

Now considering the measurement error process, the measurements y
can be represented by the following equation:

y(t) = H(t) x(t) + n(t) (130)

where n(t) is the noise on each measurement. Note that in equation 130 it is

assumed that the measurements y(t) are uncoupled with the errors in the
astrodynamic constants. This is not strictly true, since A R would have
an effect on the measurements. However, this effect would _msmall in most

cases and will be ignored here.

Assume that the measurement error process n(t} can be represented by
the following equations:

w(t) = W(t)w{t) + u{t) (131)

n(t) = F (t)w(t) (13Z)

where u(t) is the white noise input to the linear dynamic process w(t).
Equation 130 can thus be written

y(t) = H(t)x(t) + F (t)w(t) (133)

NOW,

X
m

e

w

adjoining equation 131 to equation 127,

F E 0 x

= 0 0 0 e +

0 0 W .w| J

0

0

u]

(134)

and equation 133 can be written

X = H 0 r ix (135)

e i

_11
Defining. x$(t) as the augmented state vector whose components are z_[, AY,

AZ, AX, AY, AZ, A_e,A _ , AR , Wl, w 2 - - - w , where the w's are
m em p

the various types of measurement errors, equation 134 can be written in
the form
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x.*(t) = F*(t) x*(t) + U(t) (136)

where the quantities F*(t) and U(t) are defined by comparison with equation

134 . Also, the observations may be written in terms of the augmented state
vector:

y(t) = M(t) x*(t) (137)

where M= [H 0 F] .

The general solution of equation 136 is given by

t+l

x*(t+ 1) = _*(t+ 1, t) x(t) + f¢,(t + 1, • )

t
dw (138)

where ¢*(t + 1, t) is defined by _P*(t) = F*(t)_*(t) and q_*(t,
is the order of the matrix.

t+l

Letting f¢ *(t + 1, T ) U(T) d T =
t

can be written:

t) = I where n
nil

u*(t + I), then equations 138 and 137

x*(t + 1) = _*(t + 1, t) x(t) + u*(t + 1)_ (139)

/y(t) = M(t) x*(t)

In Ref. 2 the recursive equations for generating the optimal estimate

Ax*(t) given the observations y(t) are derived. These equations, as modifed

to suit the format of this study, are:

Ax*(tk) = ¢* (tk, tk_ 1) Ax* (tk_l)

+ K*(t k) [Y(t k) - M(tk) q_e(t k, tk_ 1) Ax'I"(tk_ 1)
(140)

K*(tk) = P*(tk)MT(tk) (M(tk)P*(tk)MT(tk) ) -1 (141)
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P_"(t k + 1 } = ¢*(tk+ 1, t k)
P*(tk) -K*(tk) M(t k) P*(tk) ]

*T(tk+ 1, t k)

+ Q*(tk+l' tk)

_tk+ 1

Q*(tk+ 1, tk) = E [f¢I_.(tk+l,

L T ) U_(T) uT(T ) _*(tk+ 1,T ) dT l
(142-)

(143)

Until this point the derivation given in paragraph 2.3.13 of Volume III is

identical with that given here. However, the rest of that derivation is con-

cerned with the special problem of no systematic errors on the measure-

ments; i.e., only random noise which is uncorrelated from one measurement

to the next. In this subsection, we will discuss the operations necessary to

apply the estimation equations to the situation where the effects of both

astrodynamic constant errors and bias errors are considered.

Implementation of the augmented state vector formulation requires com-

putation of several quantities not needed in the case analyzed in Volume III.

These quantities include ¢ and ¢ , the transition matrices of the astro-
e w

dynamic errors and the noise process. Obviously, _ is the unit matrix,

since the errors in the astrodynamic constants will noet change with time.

Determination of 4_ depends upon the mathematical model assumed for the
w

noise process. As an example, consider the dynamic model shown in

equation 131, which is rewritten here for convenience:

__(t) = W(t) w(t) + u(t) (144)

Assume that w(t) is a 2,-vector whose components w 1 and wz,
measurement noise components with different time constants.

are uncoupled

Now for purposes of illustration,

where the A's are positive constants.

solution of equation 144 is:

w(t) = ¢ w(t, to) W(to) +

assume that W(t) =[-_

t

t
o

Now applying equation 138,

w(t,T) U(T) dT

=A

the general

(145)
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where

de (t,w to)
= AO (t,dt w to) (146)

with the initial conditions

21 a 22

w(to' to) = I22"

_a %2

Expanding equation 146,

(147)

where

a 11 (0) = a22 (0) = 1 and al 2

al I (t) = - Ala II

_12(t) = - A l a 12

a2 l(t) = - A 2 a21

22(t) = - A 2a22

(0) = a2 l(O) = o

(148)

In equations 148 the equations for al i (t) and a22 (t) have unit initial con-

ditions, while the equations for# 12 (t) anda 21 (t) have zero initial conditions.

Solving for a 11 first,

da 11 (t, to)

dt = -Alall (t, to) (149)

t dell (t, to) / A1
t @11 (t, to) t

O o

dt (150)

In [all (t, to) ] -in [all (to, to)] = - A 1 (t-to) (151)
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Since

[$11(to, to) ] = 1, ln[*ll(to, to) ]

-A(t
11 (t, to)= e -to)

= 0 and

(152)

solving for the other elements of the transition matrix:

¢ 12 (t' to) - _21 (t, to) = 0

-A 2 (t - to)
z2(t' to) = e (153)

Equation 145 can now be written in separated form:

[]IWl = 11 0

w2 _ 22
t

tI: o+ f 11
t

w2 t o

O

dT (154)

t

V¢l (t) =q_ 11 Wl (to) + f
t

o

t

w2(t) = _22 Wz(to) + f
t

O

Ii (T) u 1 (T) dT

J
22(v) u 2 (T) dT

(155)

-A 1 (t - to) t -A 1 (t -T)

Wl (t) = e wl(to) + f e
t

o

-A 2 (t - to) t -A 2 (t -T )

w 2(t) = e w 2(t o ) + f e
t

o

u 1 (T) dT

u 2 (T) dT

(156)

Note that equations 156 are in the form of the time domain representation

of an RC filter excited by white noise u. (t). The function W(t) = A(t) was
1

chosen purposely to achieve this result for the purpose of illustration, as the

form of equations 156 is a reasonable approximation to certain types of radar

noise where the correlation time is determined by proper choice of A.; i. e.,
1
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:z {w 1 (t) v,,1%)} < '_

for all _ , given large enough A..
1

Implementation of the estimation equations 134 through 142 requires com-

putation of the covariance matrix of the input as shown in equation 143:

Q_'(t, t o ) = E ft _ w
O

(t,T) U(T) uT(T)_ T (t, T) dT (157)
_ W

where the transition submatrices _ (t, 1" ) are used instead of _ • (t, T ),
w

since the assumed measurement errors are uncoupled with the state de-

viations and astrodynamic errors. Since the _ matrices are not random,
w

then

Q$(t,

t

to) = ft _ w(t' T) Uo(T) CwT (t, T ) d'r

O

(158)

where U (T) is the covariance matrix of the input noise; i. e.,
O

-oI.,.I-_{ul,i_u_(.,-}.
components:

Solving for Q$ (t, to) in terms of the individual

Q* (t, to) =

Q* (t, to) =

t -2A I (t -T )

ft e E{Ul Z } dT

0

t -ZA 2 (t -T)

/t °
o

)°-I I -e

2A 1

o" (t - to) )

2A 2
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This completes the formulation of the "augmented state vector" estimation

system for the case of a measurement noise consisting of two uncoupled error

sources with different correlation times and variances. If required, other

measurement error sources could be added simply by including more com-
ponents in the w(t) vector.

A problem formulation such as that just described can be used for various

types of error sources. For instance, for a bias error the time constant can

be chosen very large (i.e., A. very small). An important point however, is
1

that the dynamic model describing the random errors must be chosen on the

basis of previous experience rather than on the data itself. Thus the

"optimality" of the minimum variance procedure for reducing errors depends

to some extent on the proper choice of a mathematical model to represent the

dynamic process; i.e., for the type of estimation just described, the efficiency

of the system depends upon proper choice of correlation times and input vari-

ance in equation 160. As Kalman remarked (Ref Z) in 1960, there is no known

joint optimization of both the estimation procedure and the dynamic model.

It should also be pointed out that most of the above development is appli-

cable to the use of radar tracking with its high data rate and attendant cor-

related noise characteristics. It is expected that for a low data-rate optical
system with a measurement every half hour or hour, the errors can con-

veniently be described by one random, uncorrelated component and one bias

component. However, even in these cases correct variances should be

assigned to the measurement error components in order to achieve optimum

performance. Recent results of other studies indicate that overall system

performance is not badly affected by ignorance of some error sources (Ref. 6).

8. CHANGE OF COORDINATE SYSTEM

After transferring the space vehicle from the vicinity of the earth to that

of the moon, it will be advantageous to convert the guidance and control cal-

culations from an earth-centered to a moon-centered coordinate system. This

procedure is indicated primarily because by so doing, the errors caused by

uncertainties of the moon's position and velocity with respect to the earth are

reduced in importance. Thus these small errors are not carried along

throughout the lunar phase of the mission as was done in the analysis of

astrodynamic constants in Ref. 6. In that analysis, the constant R , the
em

earth-moon distance, was shown to have a significant effect on measurements

in the vicinity of the moon although _R was assumed tobe only2 kilometers. 'em

This could have been avoided by a coordinate change as will be seen below.

Ref. 6
Smith, G. L., Secondary Errors and Off-Design Conditions in Optional

Estimation of Space Vehicle Trajectories, NASA Ames, NASA 7N

D-ZlZg, January 1964.
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Assume that at t , the vehicle's state has been determined in earth co-
C

o

ordinates to bex = (X , Y , Z , X , Y , Ze)._ There is some error in the-- e e e e e

state estimate, and there is also an error, _ , in the estimate of the moon's
--m

position and velocity. Then the error '_ after coordinate transformation is
_m

given by:

x = _ + A_ (161)
_m _ mm

The covariance matrix of the estimation errors after coordinate trans-

formation is then given by:

m -- --m -- --m

" " - ~T }
= E T + x Ax T +Ax x +A_ A_ T

-- --m --m -- --m --m

Thus the covariance matrix is the sum of the covariance matrices of the

trajectory estimation errors and the lunar estimation errors plus the

covariance matrices of crossproducts. These crossproducts are not neces=

sarily negligible, but in any case the maximum by which the uncertainties

in each component can increase after coordinate transformation is

T ~ T ~
E ( z_ m AX m ). The covariance matrices E (x AX m ) and E (_-_m xT) are

negative along the major diagonals, because when each angular measurement

is made to the moon, a positive error in the moon's position in earth co-

ordinates results in a negative error in the estimation of the position of the
vehicle in earth coordinates.

(162.)

.. T
Since the P matrix is incremented by E (_m _-_m ) at worst, it can

be seen that the degradation of the estimate by adding in the small uncer =

tainties in lunar position and velocity will be slight, so long as the coordinate

conversion has been made early enough. Using the standard guidance

schedule described in Volume III, paragraph Z.4. Z, table g=8, it is seen
that t = 63.5 hours is a reasonable time for coordinate conversion on the

72.2=hour trajectory; i.e., just after the last sequence of earth=angle

measurements has beenmade. It was shown in computer runs that increase in

the P matrix bya small amount at this point had little effect on the final results.

What can happen if the coordinate conversion is not made, however, can be

illustrated simply as in figure 4.
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Figure 4. Illustration of Effect of Uncertainty in Moon's Position

In the planar diagram of figure 4, an error in the moon's position of Z km

along the y-axis results in an angle measurement error of:

AY
~ m ~ Z

A_ - R - Z000 - 1 milliradian (163)

Thus it can be seen that errors of this type will be similar to the landmark

errors described in paragraph Z.4.3.4 of Volume III.
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9. POWER AND ANTENNA SIZE REQUIREMENTS FOR TWO-WAY MICRO-

WAVE RANGING OFF LUNAR SURFACE

In this subsection rough requirements are developed for a two-way micro-

wave system for determining the range of a spacecraft from the moon. Lasers

are not considered since their only apparent advantage would be the gener-

ation of a narrow beam without a large antenna.

In paragraph 2.. 4.6.2 of Volume III it was shown that ranging information

some 17,000 kilometers from the moon's center with an accuracy of about

10 kilometers would be useful in reducing trajectory uncertainties. It is

apparent that the requirements of a two-way microwave system for this kind

of performance are severe. Before going into these problems, however,

some of the factors which may contribute to ranging errors are considered.

The following analysis will assume that the ranging measurements are to be

made at 69.1 hours on the standard 72. Z-hour trajectory. At this time the

spacecraft is 16,403 kilometers from the center of the moon and is travelling

at a velocity of 1325 meters per second with respect to the moon.

First, consider the maximum range error due to space vehicle movement

during the two-way transit time of the ranging signal. At a distance ofd =

16,403 -1738 = 14, 665 kilometers, the transit time is 2_/

A t- 2d _ 2 (1.4665) (104) = 0.098 second (164)

c 3 (10 5)

At a velocity of 1325 meters per second, the maximum error which could

be caused is

Ad = (132.5) (0.098) = 132 meters (165)

which is negligible compared to the assumed allowable random errors of 10
kilometers.

Also, uncertainty in the velocity of propagation will cause negligible errors.

If c is known to within 400 meters per second, the error in a 0.1-second

round-trip time is only 40 meters.

Pointing error will cause a problem only if this error is greater than half

the beamwidth. It will be shown below that a half beamwidth on the order of

0.5 degree may be required.

_2/ The notation used in this section is not necessarily consistent with the

notation used in other sections of the appendix and should be considered

independently.
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A possible error source in microwave ranging at the distances considered

will come from the fact that the moon's surface is curved and much of the

reflected power will be returned from distances greater than desired. Ob-

viously this could be time-gated out, but then some of the transmitted power,

which is at a premium at the ranges considered, would be wasted. There-

fore the allowable beamwidth is defined by the ranging error which can be

tolerated.

The situation is illustrated in figure 5.

The range spreading error, is defined as:

AR = t - (R - rm) (166)

AR = R cos _ - Jr Z R g sin Z_ - R + r
m m

{167)

For

Csin )2r << 1,

2 2
~ R- sin

AR =
gr

m

(168)

SPACECRAF T

RANGING ERROR=,t-(d-R m )

1589A-VA- 60

Figure 5. Ranging Error Due to Curvature
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Equation 168 has been plotted for half-beamwidths of 0.5 and 1 degree as

a function of range on figure 6. It is apparent that at ranges on the order of

10,000 to Z0,000 kilometers, a half-beamwidth of 0.5 degree is required to

keep the range spreading from exceeding I0 kilometers.

Wider beamwidths could be used, but then the power requirements would

be increased due to the range spreading.

Another source of error would be variation of the lunar surface altitude.

This would be averaged out over a wide region, however, when ranging is

done at long distances.

In order to calculate power and antenna size requirements for a micro-

wave system, the following two-way radar equations from Skolnik (Ref. 7) for

a parabolic antenna system are employed:

Received power:

p G 2 2k
t

P =

r (4w) 3 R4 (169)

Antenna gain:

G m

4w Ap

×z (170)

Antenna beamwidth:

65X
0 =--

I degrees (171)

where

P = received power
r

Pt = transmitted power

k = wavelength

= reflective area

R = one-way range

Ref. 7
Skolnik, M.I., Introduction to Radar Systems, New York; McGraw-

Hill, 1962
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2R m

Rm= 1740 KM

I

/
f

1_=1 DEGREEi

L
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d, DISTANCE FROM LUNAR CENTER,KM (10 4)

3.5

1589A - VB-62

Figure 6. Range Spreading Error as a Function of Range From

Moon for 0.5 and 1 Degree Beams
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A = antenna capture area

p = antenna efficiency

@ = beamwidth

= antenna diameter

G = antenna gain

Since all the transmitted power hits the target (the lunar surface) the

target cross section, _, is given by

_= kTr (172)

where k is the reflection coefficient and O is in radians.

equation 172 into equation 169, combining equations 169,

solving for the transmitted power,

Sub stituting

170, and 171, and

2 P

20 rPt (173)

which gives transmit power as a function of received power,

size, and the two constants. Assuming antenna efficiency p

reflection coefficient3/ k = -12 db {or 0.063),

range, antenna

= 0.55 and the

2

Pt = i060 [_ 1 Pr (174)

To calculate the receiver minimum detectable signal level, the receiver

bandwidth must be defined. Assuming a pulsed system with a required range

resolution of 10 kilometers the pulse length (assuming no pulse compression)

is approximately

~ 2Ad 2 (10)
T -- - = 66. 7 microseconds (175)

c (3) (10 5)

3/ This value is quite uncertain. The nature of electromagnetic reflections

from the lunar surface is the subject of considerable investigation at the

present time by Evans and Pettengill at Lincoln Laboratory.
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1
and the system bandwidth is B =-- = 1/66.7 = 15 kc. For a receiver noise

__ T

figure, F, of I0 db, the minimum detectable signal (MDS) (noise level) is

IVIDS = kTA fF = - 15Z dbm
(176)

Substituting this value into equation 173, the power required for a 0-db S/N

ratio per pulse with no losses can be determined. Assuming a signal-to-

noise ratio requirement of i0 db, system losses of 5 db, and incoherent pulse

integration gain (g00 pulses) of Ig db, the required peak transmit power can

be written

Pt (dbm) = Z0 lOgl0 (R) _ 118.75 (177)

For a 6-inch antenna at 10,000 kilometers, Pt = 5750 watts peak. Ob-

viously, a larger antenna is required. With a 4-foot antenna, 90 watts peak

is required, which is a little more reasonable. A curve showing peak power

requirements versus range for several antenna sizes is given in figure 16 of
Volume III.

The assumption of 200 pulses integration is based on the number of pulses

which can reasonably be transmitted before receipt of the return pulses. As

shown previously, the round-trip time is about 0.1 second. Then the duty

cycle for 66.7-microsecond pulses will be

66.7
=0.133

5
I0

which is the ratio of average power to peak power.

It is to be emphasized that the analysis presented in this section is not

necessarily applicable to any particular radar system, and it is not known

whether or not the system described could be mechanized. The objective

in this appendix is to use fundamental relationships to determine the approxi-

mate power and antenna requirements for microwave ranging off the moon.

10. COORDINATE ROTATION

Throughout most of the analysis, a cartesian earth-or moon-centered

(XYZ) coordinate system is used. In analyzing guidance system performance

at periselenum, however, it is often more convenient to rotate the error

matrices from cartesian coordinates to an altitude-downrange-crossrange

(adc) coordinate system. The situation is illustrated in figure 7, where it is

desired to rotate an error vector from the planet-centered XYZ system to an
adc system.
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1750E- VA-126

Figure 7. Geometry of Coordinate Conversion from XYZ System to

Altitude-Downrange-C ros srange System

Assume that the desired periselenum conditions are described by (X, Y,

Z, X, Y, 7.). Then unit vectors in the altitude and downrange directions can

be written:

X ! + Yj + Zk

a. = R (178)

d = v (179)

where R = J X Z + YZ + Z 2 is the desired periselenum radius and

V =J_2 + _Z + _Z is the desired velocity. In order to generate an

orthogonal coordinate system,

product of a and d.
c, the cross-range unit vector is given by the
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{YT. - ZY) i_ + {X7. - ZX)j + {XY - YX)k

c =_d x_a = RV (180)

Assume a position error vector at periselenum of r = e i + e __ + e k.
--e x-- y z--

The component of r in the direction of a unit vector a is given by r • a, so
--e -- --e --

that

e X+e Y+e Z
x y z

Comp (r) = r • a = {181)
a --e --e -- R

e X+e Y +e

• d = x y z (I82)Comp d (re) = r-- --e -- V

e (YZ - Z_[) + e (XZ - ZX) + e (XY - YX)
x y z

Comp (re) = r c = (183)c -- --e -- RV

Defining the components of r in the altitude, downrange, and crossrange
--e

directions as e , e_, e , equations 181 through 183 can be adjoined and
a (2 c

written in matrix form:

e
a

ed

e

D C .

r = Mlr
--a

"XIR

YZ - ZY
J,.

RV

--e

YIR Z/R

XT, - ZX XY - YX

RV RV

e
x

e (184)
Y

e
z

(185)

Rotation of the velocity errors can be accomplished in a similar manner,
s o that

v = M'v (186)
--a --e

Defining the 6-dimensional error vector ase
-- a

before

(after rotation) and
-- e

][ I[]:r M' 0 3 rI --a --e

= = ME (187)

-- a , v 033 M' v --e
I --8 e
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Now the covariance matrix of errors in the terminal position is given in

terms of the rotated coordinates by

Cov ..(Ea} = E a = E ME e M = ME ea --a -- e--e e--e
(188)

{ T}But E £ £ is just the covariance matrix of deviations from the
_ e--e

nominal trajectory, or the N matrix, as previously defined. Then calling the

N matrix after rotation into the altitude downrange and crossrange system,
N

a

N = MNM T (189)
a

where M is defined in equation 187. Either the position or velocity 3 x 3

covariance submatrices can be rotated separately by using M'; e.g.,

T
(N1) a = M'N 1 M' (190)

A development identical with that employed above can also be used to

rotate the P matrices; i.e.,

P = MPM T (191)
a

It may have occurred to the reader that all that is done in this appendix is

to rotate the error matrix from one Cartesian coordinate system into another,

when what should be done is to convert the errors into a spherical coordinate

system, since this would be a more meaningful way of describing errors

relative to the moon. However, it should be mentioned here that the error

analysis done in this report is concerned only with second-order statistical

averages - i.e., covariance matrices - which are completely described by

an ellipsoid. This means that there is some discrepancy between the real

distribution of errors around the moon, and that which can be described by

an ellipsoid. This is illustrated in figure 8, where the error distributions

are shown as different volumes in order to illustrate the difference in shapes.
Note that the shaded error distribution cannot be described in terms of sec-

ond order averages since terms of the form E(X2y) and E(YZX) are required.

There are two reasons why this is not done: (1) comparison of second-order

statistical averages with actual distributions indicates that the approximation

is good and (2) use of third-order averages is too difficult mathematically

(if it can be done at all).
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Figure 8. Difference Between Real Error Distribution and

Covariance E11ipsoid
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APPENDIX C

LUNAR PARKING AND DESCENT ORBITS

Much of the analytical background for this phase of the mission is an

integral part of either the simulation description (Volume III) or Appendix

A (Volume V). In fact, all that remains is a detailed derivation of the

various trajectory parameters and a determination of input error mag-

nitudes to be considered.

The cartesian vector solutions to the Keplerian orbit (Ref.1) are re-

peated here, since they dominate much of the nominal orbit derivation.

Given the state vector (Xk) at time (tk), the position vector components
at time (t ) are: 3

m

[ )] [tm t k -_-_a_ ]jXmj = 1 -a(1-cosv Xkj + - (v - sinv) | Xk,j+ 3 (1)
r k

j = 1,2,3

and the velocity vector components are:

sinv j_: rmXmj = rm rk Xk, --- (1-cos v) Xkj (2)

j =4,5,6

where V is the lunar gravitational constant, a is the semimajor axis of the

ellipse, and v is the incremental eccentric anomaly, which conforms to

the equation

rk dk
3/Z (tm-tk) = v -sinv + --a sinv +_-- (1 - cos v) (3)

a

Ref.
Pines, S., H. Wolf, D. Woolston, and R. Squires, Goddard Minimum

Variance Orbit Determination Program, Goddard Space Flight Center Re-

port.
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The saclars r. andd. represent the radius vector magnitudeJR1 1 i[andthe

dot product of the radius and velocity vectors R. V. respectively.
--"1. --1

Major notation used in the analysis is listed below.

LIST OF NOTATION

English Alphabet

B Astronomical length vector

E Eccentric anomaly beyond periselenum

F Velocity increment vector

G Guidance law matrix

H Row vector of partial derivatives of observables

I Identity matrix

K Six-dimensional weighting vector

M Total number of observations on parking orbit

N Covariance matrix of deviations from nominal state

P Covariance matrix of errors in estimated state

Q Variance of measurement errors

R Selenocentric instantaneous vehicle position vector

S Selenocentric unit vector in the direction of a known star

T Period of parking orbit

U Unit eigenvector corresponding to maximum position uncertainty

V Selenocentric instantaneous velocity vector

W Direction cosine matrix for final tangential, vertical, and
transverse errar

X Six-dimensional state vector

Y Magnitude of an observable

a Parking orbit radius, semimajor axis (general}

a d Descent orbit semimajor axis

b Length or component of B vector

c Random error

d Dot product of R and V

G-2
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e
d

f

i

q

r

s

t

u

v

x

Y

Descent orbit eccentricity

Deviation from nominal velocity increment vector

Inclination angle between the earth's equator and the earth-moon

plane

Mean lunar radius

Magnitude of R

Component of S vector

Time

Component of U vector

Magnitude of V

Deviation from nominal state vector

Deviation of observable from reference value

Greek Alphabet

Unit vector normal to R in star-vertical measurement plane I-/

I" Covariance matrix of input errors

6 Variation

@ True anomaly

M Displacement of moon beyond vernal equinox

S Displacement of sun beyond vernal equinox

A Eigenvalue of position uncertainty covariance matrix

k Selenocentric latitude

Lunar gravitational constant

Gravitational constant of earth
e

Gravitational constant of sun
s

Incremental eccentric anomaly

Standard deviation

T Time interval between observations on parking orbit

State transition matrix

d_ Selenocentric longitude

l-i/Except in Section 3.
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Supe r s c ripts

[ ]T Matrix transpose

[ ]-1 Matrix inverse

Subs cripts

F

i,j

L

1T1

M

n

O

P

l,Z,3

4,5,6

Symbols

A Pertaining to termination of midcourse

E Pertaining to termination of parking orbit

Pertaining to beginning of descent orbit

Vector or matrix components z--/

Pertaining to termination of descent orbit
th

Pertaining to the m observation

Pertaining to the last observation

Star index number

Pertaining to the beginning of parking orbit

Pertaining to the first pass over desired periselenum

X,Y, and Z cartesian position components respectively

X,Y, and Z cartesian velocity components respectively

Above Letters

( ) Predicted value
!

( ) Actual value

("_) Uncertainty, error in estimated value

( ) Indicated or observed value

Below Letters

( ) Vector

DETERMINATION OF NOMINAL FLIGHTPATH

With the nominal parking orbit defined by two noncolinear vectors,

Symbols

I ,

Z_/ For time-varying vectors and matrices, the first subscript denotes the
time.
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r0 cosk 0 cos _0

r0 cos kO sin _0

r0 sin k0

cos k p

cos kp

sin kp

rp

p,p = rp

rp

of equal magnitude,

r0 = rp = a

cos _ p

sin
P

The period of the circular orbit is

27ra3 /2
T-

JY

With the vector (Rp} as the orbital plane reference,

Ep= 0

and the eccentric anomaly at time (to) is

(:EO= O0= (sgn (O0)) arc cos 2 (-_0

{4)

(5)

(6)

{7)

(8)

(9)

This defines the quadrant of the angle, when the inverse cosine func-

tion is defined as the principal value, less than _r radians in absolute value.

(10)

With the injection point as the reference in the orbital plane,

Vo=O

the incremental eccentric anomaly separating (to) and (tp) is

Vp = z,r - E ° (11)

for a retrograde orbit.
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The fraction of a period separating the two vectors is merely (vp/ZW).

Finally, the radius vector is always normal to the velocity vector in a circu-

lar orbit, so that

do = 0 (IZ)

All of the necessary quantities are now available for computation of the

initial velocity vector _4D" This completes the geometric definition of the

parking orbit.

In order to provide an automatic rendezvous capability in the event that no

landing is made after descent, the descent orbit period is chosen equal to the

period of the circular orbit. It follows that

a d = a (13)

The eccentricity of the descent orbit is

r
L

e d = 1 a (14)
d

The eccentric anomaly of the descent arc (EF) must be 90 degrees for

equation 13 to hold, From the well known relation

2
Jl - e d sin E F

sin 8 F =

1 - e d cos E F

(15)

plus the fact that the true anomaly separating t F

circular and elliptical orbits,

sin 8E = J 1 - ed2

and t
L

is the same for the

(16)

Since the true anomaly is never smaller than the corresponding eccentric

anomaly, and t E lags t L, the principal value of e E is negative and greater

than w/2 radians in absolute value, The eccentric anomaly of the descent

arc, as measured on the circular orbit, is

E E = 8E (17)
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Since descent is initiated on the second revolution,

tric anomaly at descent time is

In this case E E is negative and E 0

= 4w-lEE] - EOV E

Since this is measured along the circular orbit,

ting t O and t E is

v E

t E - t o =_-_- (T)

the incremental eccen-

(18)

is positive; the value of (rE) is

(19)

the time interval separa-

(20)

By substituting E for m and O for k in equation 1, the position vector

R E = R__ F at descent initiation can now be computed.

Now with t F as the reference initial point of the descent orbit,

v F = 0 (Zl)

so that the incremental eccentric anomaly at time t L is

v L = - E F

The descent time can be computed from Kepler's second law:

31z

(22)

(23)

Finally, with

rF= a = a d
(24)
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the velocity vector at time t can be computed from equation 2:
F

X M - (cos VL) XFj

XF, j+3 = (ad)3/2 (25)

(tL- tF) - -- (vL - sin VL)

in which the position vector (RL) is the nominal periselenum radius vector,

XLI

XL2

XL3

m

L cos kp cos _p'

r L cos Ap

r L sin )_p

(26)

Magnitudes of radius vectors, velocity vectors, and their dot products are

always computed from the same simple expressions:

rK _/ (XKI)2 (XK2)2 2= + + (XK3) (27)

VK = J(XK4) 2. + (XK5)2 + (XK6)2 (Z8)

dK : R___K. V_K (Z9)

The nominal perigee velocity vector is readily computed from equation 2

with the subscripts m and k replaced by L and F respectively and (a) replaced

by (ad).

The nominal velocity impulses are merely the vector differences between

velocities before and after thrust application. Since injection into the parking

orbit is assumed impulsive and tangential,

X A = XO , 1 < j < 3 (30)J J

XAj = (VA/vo) Xoj'
4 _<j _<6 (31)

where v A is the assumed speed at midcourse termination.
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FAj =

Similarly,

A typical speed of 2400 meters/per second is assumed for (VA),

XO, j+3 XA, j+3' l<j<3

and

(32)

FIEj = XF, j+3 - XE, j+3' 1 < j < 3 (33)

in which the velocity vector at t F is computed from equation 25 and the ve-

locity vector at tie follows from equation 2 with the subscript m replaced by

IE and k replaced by O.

2. TYPICAL INPUT IERROR MAGNITUDES

2. I Thrust Tolerances

With three independent and orthogonal thrust error components of zero

mean and equal variance, the total rms thrust error is

x/3 _T (34)

where 0-T is the rms thrust error in each axis. This applies to both thrust

application and thrust measurement.

Although the velocity increments are assumed impulsive for the analysis,

typical error figures should be derived on the basis of finite pulse width. At

injection the total impulse is

vA -%/_ = 2400 - 1589 = 811 meters/sec (35)

This is equivalent to a time-acceleration product of 82,8 earth g's, corres-

ponding to 13.8 g's for 6 seconds in the allowable acceleration limit (Ref. 2).

At half thrust for twice as long an interval, the acceleration is essentially

Ref. 2

Bryson, A. IE., K. Mikami, and C. T. Battle, Optimum Lateral

Turns for a Reentry Glider, Aerospace Engineering, Vol. 21,

No. 3, March 1963, p. 21.

C-9



7 g's for 12 seconds. The linearity error in an accelerometer is the pre-

dominant factor at this g-level; a reasonable estimate of total thrust measure-

ment error at injection is:

-5
10 g's

x 7gx 12 sec = 0.00825 meter/sec (36)

or an rms error in each axis of

0. 00825
" 0. 005 meter/sec. (37)

v3

Actually, this uncertainty in the applied impulse is outweighed by orbital

velocity uncertainties typically encountered. To avoid possible implication

of stringent impulse measurement specifications, a lenient tolerance of 0.05

meters per second rms error in each axis is assumed here, --3/ and therefore

the thrust measurement error plays a very minor role in this study.

Descent thrust pulse width is not as readily fixed by obvious considera-

tions, and no detailed attention has been devoted to de scent mechanization.

As an expedient, the rms impulse measurement errors have been assumed

equal for descent and injection into the parking orbit.

For control of applied thrust, the errors are not expected to be so small.

One percent of the applied impulse is a reasonable estimate of rms applica-

tion error. For injection, then, the rms error in each axis is typically

C0.01)(2400-1589) . 5 meters/sec/ (38)
3

For descent, the total nominal impulse is 150 meters per second; rms

error for each axis in applying the descent impulse is typically

C0.01) (150) " 1 meter/sec (39)
3

Unfortunately, however, this is an excessive amount of error for the

FTOA guidance system assumed here. As a rough indication of the resulting

rms tangential periselenum miss distance, consider the extra arc length

traveled over a quarter of an orbit (90-degree descent) due to an excess

3/ See Table 3-2 of Volume III.
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velocity of I meter per second: Equation 7 gives about 2 hours as the period

of a low altitude orbit, and

meter
x (1//4x 7200) seconds -" 1800 meters (40)

sec

The 3-o- tangential error would then exceed the allowable specification of 5

kilometers, even without any navigation errors.

To prevent the guidance errors from dominating the results, it is neces-

sary to assume an applied descent thrust error of 0. 1 meters per second rms

in each axis and to determine the navigation requirements with the under-

standing that the FTOA guidance scheme is inadequate and a superior tech-

nique must be used in the actual system mechanization.

2. 2 Initial Conditions

In previous studies (Ref. 3 and Ref. 4) it is assumed that the initial state

vector estimate coincides with the nominal trajectory. At the beginning of

the lunar parking orbit, however, a more accurate state vector estimate will

be available from midcourse navigation information. A distinction is there-

fore made between the deviations from the nominal initial state and the un-

certainty in the actual state. For a simulation in which the sensitivity co-

efficients used in data processing are computed from the estimated trajec-

tory, the initial deviations from nominal state obviously play a minor role.

Initial rms values of I0 kilometers and I0 meters per second were chosen as

the standard position and velocity deviations in each axis respectively.

The standard initial uncertainties in each axis were assumed to be 1

kilometer and 1 meter per second for position and velocity respectively.

These values were selected in order that the total rms initial uncertainties

would lie roughly in the vicinity of the terminal midcourse navigation errors

as given in Section 2 of Volume Ill.

Ref. 3

Smith, G. L., S. F. Schmidt, and L. A. McGee, Application of

Statistical Filter Theory to the Optimal Estimation of Position and

Ref. 4

Velocity on Board a Circumlunar Vehicle, NASA TND-I208, 1961.

McLean, J. D., S. F. Schmidt, and L. A. McGee, Application of

Statistical Filter Theory to the Optimal Estimation of Position and

Velocity on Board a Circumlunar Vehicle, NASA TND-IZ08, 1961.
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2.3 Measurement Errors

As explained in subsection 3.2 of Volume Ill, the errors in the measured

angles are dominated by local vertical pointing error• Due to the absence of

a lunar atmosphere, errors on the order of a tenth of one degree are con-

sidered within the anticipated state of the art. Because of the tradeoff be-

tween measurement uncertainty and frequency of observation, the choice of

an assumed standard measurement error for this analysis is not especially

critical. A value of 1 milliradian rms was chosen for the first series of

runs, and larger values were investigated for the complete guidance simula-

tion.

Wherever applicable, the rms uncertainty in the observed altitude was

assumed to be 1 kilometer, including terrain irregularities.

3. TRIAXIAL LUNAR OBLATENESS (Ref. 5)

th
The i component of perturbing acceleration due to the nonspherical shape

of the moon can be approximated as

A_.- + _ --- i-1 2,3
i o i 2 2 2 '

r r r

where

= (1 - 0.61)_

p = 0. 0006294

and

(41)

(42)

(43)

(3)(0. 397) = O. 5955 (44)

Ref.
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A Review of Space Research, National Academy of Sciences, National

Research Council Publication 1079, Iowa State University, June -

August 1962, pp. 3-9, 3-10.
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In these equations, k I and k 2 take the values

k I = i, i = I, 3 -"

k I = 3, i = 2

k 2 = i, i = i, 2

k = 3, i = 3
2

4. STATE TRANSITION MATRIX

(45)

The transition matrix elements follow directly from equations 1 and 2.

For I < i < 3,

q_mij -- Am-1 - cos 6(i, j)

rm_ 1

X -1
m-l, i sinv Vm j m

L-m-i

2 A
(46)

- t m-I V - sinv
m m- m

6 (j,i + 3)

A

Xm-1, i + 3 [a3m/Z1 (1 - co m) Vj (l_m)
- Sl)

3 _/am_ 1 (Vm- sinVm)Vj _m-1) l
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can be found by differentiation of the various Keplerian relationships; e.g. ,

from the definition of the semimajor axis,

( ) 2Vj am-I = - a Vjm-l am_ 1

= 2a 2
m-1 6 ,j + 6 ,j

X m-l'J m-i

+- o(_,j)+ ,
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APPENDIX D

LUNAR LANDING ANALYSES

In this appendix equations for the lunar landing analyses are derived and

choices of landing parameters are explained. Mathematical notation used is

listed below.

LIST OF NOTATION

English Alphabet

F

f

go

h

I
sp

R

r
c

T

t

V

X

x

Y

Y

General control quantity

Deviation of F from the reference value

2
Acceleration of gravity at the earth's surface, 9. 80665 m/sec

Altitude above the lunar surface

Fuel specific impulse

Line-of-sight range from the spacecraft to the desired landing

site

Mean lunar radius, 1738 kilometers

Magnitude of the vehicle thrust vector

Time, referenced to the time of landing maneuver initiation

Magnitude of the spacecraft velocity vector

General state variable

Deviation of X from the reference value

The general observable quantity

Deviation of Y from the reference value
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Greek Alphabet

ct Orientation of the spacecraft thrust vector relative to the ve-

locity vector

Spacecraft flight path angle relative to spacecraft local horizontal

@ Angular displacement of the spacecraft from the desired landing

site in lunar central coordinates

Lunar gravitational constant; 4. 89820 x 1012 m3/sec 2

0- Root mean squared value

Line-of-sight angle from the spacecraft to the desired landing

site referenced to spacecraft local vertical

_2 Line-of-sight angle from the desired landing site to the space-

craft referenced to landing site local vertical

Super scripts

T

[ ]
-I

[ ]
Sub sc r ipt s

B

D

f

i, j

m

M

n

o

P, q

r

X

Y

Matrix transpose

Matrix inverse

Denotes quantities pertaining to a system using beacon tracker

observables

Denotes quantities pertaining to a system using doppler naviga-

tion observable s

Denotes final value

Matrix or vector element indices

Time index

The maximum value of m

Indicates a random error quantity

Denotes initial value

Matrix or vector indices

Denotes reference value (value on the nominal trajectory)

Denotes a quantity pertaining to the state variable, X

Denotes a quantity pertaining to the observable, Y
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Operators

( )

O

( )

Derivative with respect to time d(__._}
dt

d()
Derivative with respect to T, d--"_

Ensemble average overall possible missions

Symbols above and below quantities

A
( )

N

( )

Estimated value or value computed on the basis of observed

information

Estimation error, difference between the actual value and the

e stimated value

( ) A vector (column matrix)

1. OPTIMUM TRAJECTORY PROGRAM

1.1 Equations of Motion

This is a steepest ascent program designed primarily for determining

optimum lunar landing trajectories for constant-thrust vehicles. I/The pro-

gram uses the method of steepest ascents to determine the coefficients of a

second order polynomial {in time} vehicle pitch program which will enable the

vehicle to land in minimum time.

The equations of motion are: (See figure l)

u _ T sin_= +
r +h 2 m

c (r c + h)

us T cosu = +
r +h m
c

(i)

= 180 u (deg/sec.)
r +h

C

I/ A more thorough explanation of this method of obtaining optimum trajec-

tories can be found in A. E. Bryson and W. F. Deuham, "A Steepest

Ascent Method for Solving Optimum Program Problems, Journal of

Applied Mechanics, June 1962, pp. 247-257.
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Figure I. Lunar Landing Geometry
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where

m m + rnt (r{a = constant)
o

2

71 + r/zt + r}3t : pitch program

S "

U

m
o

A =

vertical velocity

horizontal velocity

initial vehicle mass

mass rate of flow

h = altitude of the vehicle

@ = the central angle covered

rll' _q2' and r13 are the coefficients determined by the steepest ascent

procedure.

Using numerical integration, the program computes the trajectory deter-

mined by the vector equation

b = f{b, t, r] °) t_

where

b = a column vector whose components are u, s, h, O
I

b = a column vector whose components are u, s, h, O

t = time

U ° = a column whose components are _ql' 02' _3

Simultaneously with this computation, three additional trajectories are gen-

erated by using:

]3 i = fIB(i).t, r; ° +Srl(i)] ; (i= 1, 2, 3) (3)
I i I _ I
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where

6n Ci)

as"

•th
= the 1

8_ 1 0

0 6_2

0 0

r_

column of the 3x 3 matrix L6_]J of perturbations in _defined

i

0

603

(4)

i_(i) iTM [B] " •= the column of the matrix with elements u., s., h., and 0..
-- i I i 1

= the 1 column of the matrix B with elements u., s., h., and (9..
i i i i

Integration of equation2 stops when s = sf (the desired final value of s). The

time is denoted by t . Integration of equation 3 stops when s. = sf. The timen !

is denoted by t..
1

I. 2 Optimization of Pitch Program

When the integrations indicated above have been completed, the program

automatically computes new values of _l' T]2, and _3 to be used in the next

iteration of the optimizing process. The computations performed are indi-

cated below and are written in the nomenclature used by Bryson and Deuham.

=[(Uf - U(tn))l
L(hf h(tn))

(5)

F ] F ](ui(ti)_" U(tn)) 6@i i {i, 2, 3} (6).. .. -.

6'--i L(hi(ti)- h(tn))j L6,i(z)

(_ = t
n

6_i = (t i - tn) { i = I, 2, 3}

(7)

(8)
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6_2(1)

6i] 2

6_3(I)

8"q 3

(Z) -
841

6 _1

(z)
642

602

(2)
843

6_33 J

-6¢1 -

61]1

s¢2
5¢ =-

61]2

8¢ 3

8_ 3

{lO}-3/

In addition, the following definitions are made:

[14_'1 =rk 'uJ']T [A]-1E 4]
× (ii)

_T 1

10¢ = 5qb T[-A-] -1 _qb (13)

The matrix [A] is a 3 x 3 diagonal weighting matrix used in determining

the relation bet-w6en the changes in 131' 7]2' and N3 to be made from iteration

Z/The transpose of the quantity defined as Lj[k4]here is the same as the pro-

duct X.4 [G] in Bryson and Denham.

3//The transpose of 5, is equal to the quantity Xd_ T [G] in Bryson and
Denham.
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to iteration. {The values of the elements of [Alused in this analysis are not

included in the report provided by Raytheon.)

Next the vector d_3is defined; d_ can take on two possible values, de-

pending on the sign of the quantity (dP) Z @T Ii q_l- _ @ 2; where (dP) is a pre-

determined constant dependant on the maximum step size of the changes in

quantities El' n 2, and E3 to be allowed from iteration to iteration. (The

value of (dP) used by Raytheon is not reported. )

If

(dP) a

Then

- @$ Z
(14)

Should the indicated difference be less than zero,

(15)

The change in _ to be made for the next trial run is determined from the

following expression:

Then

dE
-_new = -_old +-

(17)
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The process outlined above is repeated using the new values of H I, U2'

and _3 until u, s, and h converge to the desired final values uf, sf, and hf

while t is minimized, thus producing an optimum trajectory.
n

i. 3 Typical Optimum Trajectory Characteristics

Figures Z through 6 illustrate some characteristics of the class of trajec-

tories obtained by the preceding optimization technique.

Figure 2 illustrates two optimum pitch programs developed for two

sets of inputs. The input quantities and the resulting pitch program equations

are included in the figure.

Figures 3 and 4 show typical X-Y profiles of the trajectories genera-

ted. Input conditions are summarized in the figures.

Figure 5 illustrates the line-of-sight angular rate (_) as a function of

time for trajectories corresponding to three sets of input conditions.

Figure 6 shows the characteristic velocity, AV, required for an optimum

descent from periselenum of a synchronous approach orbit. Other pertinent

parameters are summarized in the figure.

' I
INPUT CONDmON_

ho= 15.25 km too= 3l,lO0 KG

VO= 1744 m/SFC ISp= 420 SEC

THRUST LEVEL, 133,500 NEW

FOR 72 (t)

h o = 38.1 km r% • 31,10O k9

Vo = 1723 m/SEC Isp= 420 SEC

THRUST LEVEL,133,500 NEW

50

1 OPTIMUM 'PITCH PRO;RAM

'_1" 186.6-o. og027t-l.89x10"St 2

__11 ,_2 ,200.4-0.17111 + i.19 XlO "5 t 2

I00 150 200 250 300 350 400

TIME AFTER THRUST INITIATION, t (SECONDS}
1750E-VB- 129

Figure 2. Typical Optimum Pitch Programs
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INTTIAL CONDITIONS

ho= 15._'5 KM

Vo = 1744 M/SEC

Mo= 31,100 KG

-T-sp : 420 SEC

THRUST LEVEL = 133_500 NEw.

I I

>-

NOTE :

x AND Y FORM AN INERTIAL

COORDINATE SYSTEM CENTERED

AT THE LANDING SITE, WITH

Y ALONG LANDING SITE

LOCAL VERTICAL

50 I00 150 200 2,50 300

X (KILOMETERS)

3,50 400

1750E-VB-130

Figure 3. Typical Landing Trajectory Profile
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NOTE : I

\
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Figure 4. Typical Landing Trajectory Profile
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INPUT CONDfTIONS

I CURVE (_)

ho=15.25 Km too:31,100 KG

Vo=1744 M/SEC Isp=320 SEC

THRUST LEVEL = 133,500 NEW

2 CURVE (_

ho=15.25 KM too=31,100 KG

Vo=1744 M/SEC Isp=420 SEC

THRUST LEVEL=I33,500 NEW

3 CURVE (_

ho=38.1 KM mo=3_,lO0 KG

Vo=1723 M/SEC I=p=420 SEC

THRUST LEVEL= 133,500 NEW

o 40 80 120 160 200 240 280

TIME AFTER THRUST INITIATION t (SECONDS)

®

®

Figure 5. Typical Plots of Line-of-Sight Angular

Rate _ , vs Time
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2. LINE OR PREDICTIVE GUIDANCE

2.1 Navigation Equations

This subsection derives expressions for the state variables h, 8, N, and

V in terms of the quantities observed by the two navigation concepts, beacon

tracking and doppler navigation. The beacon tracking observables are line-

of-sight range, angle, and their time derivatives (R, R, _, _) measured to a

beacon located at the nominal landing site. The second navigation concept

observes altitude (h), line-of-sight angle to the landing site (_), and range rate

in three known directions (R I, R 2, and R3). Since a two-dimensional

problem is assumed, the range rate observations are assumed to be made in

such directions that R and R are always equal. Thus the doppler navigation
2"

observables areh, _, R l an?R g.

2.1. 1 Beacon Tracking Navigation Equations

Figure 7 illustrates the geometrical situation existing for the descent phase.

The symbols that will be used are defined as follows:

_{ = the angle between the velocity vector and the local horizontal plane

measured in the plane of motion (flightpath angle)

h = altitude of vehicle above a reference lunar sphere of radius r
c

= the angular displacement of the vehicle from the landing site in

moon-centered coordinates (measured in the plane of motion)

V = magnitude of space vehicle velocity rectory

R = line-of-sight range from vehicle to landing site

R = time derivative of R

= angle between local vertical and the line of sight to the landing site

= time derivative of

r = radius of moon at landing site
c

The landing site is allowed to be in the plane formed by the velocity vector

and local vertical•

To derive expressions relating the state variables h, 8, y, and V to the radar

observables R, R, @, and _, proceed as follows. The known quantities are R,

R, @, _, and r . The angle @ can be computed by applying the law of sines to
c

triangle AOB.

sin @ sin

R r
c
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.'. 6) = sin "I R sin_ (18)
r
c

Then the quantity h is available from the law of sines.

r +h r
c c

sin [w - (,4" e)] - sin ,

r +h=
c sin

r sin (4+ e)
c

h _

r c [sin _ cos e _ cos (_ sin e]

sin _ " rc

2 R 2 sin 2 _5]I/2h = R cos _ + rc - - r (19)c

Functions relating y and V to the observables are most conveniently de-

rived through vector analysis. In the following analysis an underlined

quantity refers to a vector, and the quantity is the vector magnitude. For

example, V is the velocity vector and V =iv I.
I I
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Figure 7. Landing Phase Geometry
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The following definitions refer to figure 8:

A = A vector from point O to A

B = A vector from point O to B

R = A vector from point B to point A

V = the velocity of point B

In vector notation,

R=A-B (20)

and

R = A - B (21)

Since A is a constant vector, A is zero, and

R = -B = -V (22)

Vector differentiation results in the expression:

• dR R
R = -- + oa x R (23)
-- dt R -- --

R/R is a unit vector in the direction of R.

The vector co is perpendicular to the plane formed by A and R and equal

in magnitude to _. For the geometry of figure 8, cois positive toward the

reader. The quantity c0x R is perpendicular to R and in the plane formed by

A and R. The positive senses of all vector quantities are illustrated in

figure 8. The following statements can be made.

dR/dr = R = an observable

p = ",-r- (_, + o)

where $ is an observable, and 0 as a function of observables can be obtained

by differentiation of the expression obtained earlier for 8.
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Figure 8. Vector Diagram of Landing Maneuver
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-1
@ = sin s nO]

C

R_ cos _5 R sin _5

2 _ R 2 2_ I/2r sin
c

Therefore, if

R

R= R---_ + _x R

then

2 2 Rz _)2

and

1/2

- I _] 0_R
tan _ = tan - tan =

tan _ _
R (¢, + e)

R

(24)

(25)

From figure 8 it can be shown that:

_=¢+ q_- =/2

_,_/ = _5 --_ + tan
R

The four resulting transformation equations are:

(26)

-[< ]0 = sin 1 R sin q5

2 2 2 ¢] 1/2h = R cos q5 +Jr - R sin - rc c
(27)
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-l[R(%5+e)= %5--_ + tan

( ' )v = (_)+ Rz (%5+_)zI/Z

where

0 •

R %5cos %5 + R sin %5

[r 2- R2 sinZ%511/2c

]

The term 0 appearing in the expressions for 7 and V appreciably compli-

cates the partial derivative equations required for the linearized error

analysis. However, over the range of parameter values covered by the

landing maneuver, @ is very much smaller than %5so that the approximation

$ + @ "=%5is very accurate.

were derived are then:

@ _- sin 1 R sin

_ R 2

The equations from which the partial derivatives

1/2

sin2%5 1 - rcr 2h=Rcos %5+ c

- %5- _ + tan

v" [(R)Z + (R%5)ZlI/Z

The resulting partial derivative expressions which are used in the

analysis are:

Oh i R sin 2 q5
= COS _-

1OR - 2 _ R 2 sin2 %5
C

0 O sin @

_=[rc2 - R2 sin2 ]I/2%5

(ZT)

(28)
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OR

z + (R_)z//2

Oh
-- = 0

aR

c_O
_0

oA

___ .__ R_b

ak (i) a z+ (R_)

OV. R

Oh
-- = - R sin _)
a_ 1 + R cos qb

2 R 2rc - sin

)
ao Rcos

rc2 - R 2 sin2_] I/2

a_ " 1

c)V.
_= 0
a_b
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RR

+ 1/2

c) V • R 2 _)

e3_, i_.)2 + (R_)2] 1/2

2. I. 2 Doppler Navigation Equations

a. Description of the Observation Scheme. - The doppler navigation

combination of observables consists of altitude, line-of-sight angle to the

landing site, and range rate to the surface in each of three directions. For

ease of visualization, the devices producing this information can be thought

of as an altimeter, some sort of optical device, and a three-beam doppler

radar system. (Knowledge of local vertical is assumed.) The altimeter de-

termines altitude, and the three-beam doppler radar provides sufficient

information to allow calculation of V and _. All parameters pertinent to

discussion of the three-beam doppler radar are illustrated and defined in

figure 9. The antenna system for this analysis is assumed to be gimbaled

and controlled so that the beam pattern remains fixed with respect to the

coordinate system, X, Y, Z. This is done by controlling the direction

vector OP so that it is always along local vertical. (Errors is establishing

local vertical can be lumped with range rate measurement errors.) The

vehicle pitch axis (X') and the X axis are allowed to be coincident. Since the

two-dimensional trajectory is assumed, they will remain coincident through-

out the landing maneuver.

Several parameters of the system are known prior to landing:

• The angles A I, A 2, and _ which define the geometrical properties of

the beam pattern

• The vector OP is along local vertical.

• The vector OA is in the Y' - Z' plane. (For a two dimensional

analysis, OA is also in the Y - Z plane.)

The three observable quantities are:

R 1

R 2

= Vehicle range rate to the surface along vector O__A

= Vehicle range rate to the surface along vector OB

= Vehicle range rate to the surface along vector OC
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J /"
• V == VELOCITY VECTOR

• AI, /'_'2 , AND _ ARE KNOWN GEOMETRICAL PARAMETERS

OF" THE THREE-BEAM DOPPLER SYSTEM

t I

• XIY,Z': VEHICLE COORDINATE SYSTEM

• X tY ,Z : COORDINATE SYSTEM WITH ORIGIN AT VEHICLE

CENTER OF GRAVITY. X AND Y FORM THE LOCAL

HORIZONTAL PLANE

• VECTORS O Ao O_..BB,AND O C REPRESENT THE BEAM AXES.
1589A - VA- 68

Figure 9. Geometry of a Three-Beam Doppler System

for Velocity Determination
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By allowing the Y-Z and Y' - Z' planes to be coincident, the vector OA is in

k3 --the plane of motion with the result that the observables R2 and are always

equal. Therefore only one of these quantities must actually be observed.

Thus the set of observables when the trajectory is restricted to two dimen-

sions is: h, 4, I_I, and

b. Doppler Navigation Equations. - Three sets of relationships are

required by the digital error analysis program. First, the observables

themselves must be defined in terms of the state variables; second, the

state variables must be defined in terms of the observables. Finally a

matrix of partial derivatives, [G], where g.. is the partial derivative of
th lj

the i th state variable with respect to the j observable quantity, must be

formed.

The following statements and constraints facilitate definition of these

quantities (see figure 9 for definition of terms).

• The anglesAi,A2, and_ are known.

• Vector OA is in the Y' - Z' plane.

• Vector OP is in the direction of local vertical.

• The landing trajectory is two-dimensional, all motion being in the

Y- Z plane.

• The X and X' axes are coincident.

With these restrictions, the expressions for state variables in terms of

observables are:

h=h

. 1f.c+he = _- _ - cos sinr
c

-I [R2 sin A 2 - R 1 cos _ sin A 1N = tan ...........

RI cos A I - R2 cos A 2
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1/z

Conversely, the expressions which define observables in terms of state

variables are:

(29)

h= h

-i ([ _ h) Z r sin@c ] >

= sin

r + (re + - 2 r (r + h) cos 0 I/2
C C

• [RI= V sin 7 cos + cos y sin

R2= V [COS _fCOS_ sin A 1 + sin _f cos/_l]

(30)

r _

The
expressions for the matrix, [GJ , of partial derivatives are derived

from equations 29. The subscript iYefers to state variables as follows:

i = l-_h

i = 2--8

i = 3--_

i = 4--V

Similarly, observables quantities are denoted by the subscript j :

j = l--h

j= z--i<
1

j = 3-.._b

j = 4--R z

Equations defining the elements of

_ ah I
gll - ah -

_ _h 0
glg -

aR
1

G] in terms of the observables are:
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_ Oh
_0

g13 - 0 qb

-oh =0

g14 = 0"_2

Oe

g21 --" 0 h -

O0

g22 -

2r
c

_ Oe
g23 - O _ - 1 +

- OY 0
g31 - 0 h -

cosq5

(rc + h)z sin2 qb]l/2

(r + h) cos @
C

2 _ (r + h)2 sin g @] i/2rc c

- aN __2LcosF A1 sin A 2 - cos _ sin A I cos A z ]
g32 - -

O cos A I - cos A 2 x+ RzsinA2 - /<IC°S _sin AI

- OY R1 [COS A 1 sin A 2 - COS _ sin A 1 COS A2 ]
g34 - =

OR2 [f<lc°s AI - R2 c°s A2] 2 + [R2 sini2 -RI cos _ sinAl] 2

0V
- --= 0

g41 Oh

RI[COS2AI + co'2_ sinZAl ] -R2 [co"Al cos A2- co" % .inAl sinA2]

I COS A 1 Rg cos A2) + (i_ 2 sin A g R1 COS C sin AI)
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__v
_0

g43 - 8+

_ _v
g44 -

aR
2

i<Z - i_1 [cos A 1 cos A 2 + cos _ sinA 1 sin A 2]

[cos A 1 sin A 2 - cos % sinA Z cos A2] [(R I cos A 1 - ...

R2 cos A2 )2 ""'" - + (.R2 sinA2 R1 cos _ sinA1 )2] 1/2

2. 2 Gravity Turn Nominal Trajectory

Z. 2. I Trajectory Determination Program

Knowledge of reference trajectory parameters is required to perform the

error analysis of the linear predictive guidance concept. Therefore a

computer program was developed to yield the necessary information. The

basic method is to provide the computer with sufficient information to specify

one and only one constant-thrust gravity turn trajectory and then let the

computer determine exactly with trajectory it is.

The input information consists of specification of the nominal initial

altitude ho, initial velocity Vo, initial flightpath angle _o' initial mass mo,

fuel specific impulse Isp, nominal terminal altitude hf, and nominal terminal

velocity Vf. In addition, the fact that a gravity turn trajectory is to be flown

is programmed. The initial value of @ is set equal to zero. Thus a complete

set of initial state variables is specified, and two desired terminal condi-

tions are known. In addition the applicable equations of motion are known:

= V sin,f

V6 _
r +h

c

cos "_

V co s _ T sina
-

r + h mV
C

_cos_

V (r + h) Z
C

(31)

V - T cos o _ sin
m

(r c + h)
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where
t

m = m +o I
o

m dt

The constant-thrust gravity turn trajectory specification means that the

angle _ is zero, that the magnitude of the thrust vector (T) is constant at

its initial value (To), and that rh is a constant. If these facts are substituted

into equations 31, the modified equations of motion given below result.

h = Vsin_/

• V
e = cos

r +h
c

V cos _ _ cos

r +h Z
c V(r + h)

c

• T
o _ sin_

V -
m + _nt 2

o (r + h) (32)
c

Given the initial condition data above and an assumed value for T , the
o

equations of motion are numerically integrated until the velocity is equal to

the nominal terminal value. At this time the existing value of h is compared

to the desired value hf. If h is greater than hf, the value of T is reducedo
by a small amount for the next trial and vice versa. When the terminal

values of V and h are within prescribed error limits of the desired values

Vf andhf, the nominal trajectory has been determined• (The error limits used

are 0. 1 meters per secondinvelocityand 1 meter in altitude. ) The following

quantities which completely described the nominal trajectory are then available:

•Initial values of all state variables, control quantities, and the initial

mas s

•State variables as functions of time along the trajectory

•Complete set of terminal conditions including the nominal flight time, tf

One notes that the initial value of e is arbitrarily set equal to zero above.

This is not consistent with definition of @ given in paragraph 4.3. I. i. a of

Volume III, where @ equal to zero is seen to correspond to the landing site

and not to the point of trajectory initiation. This switch in the reference

point for @ is permissible because the quantity @ does not appear in the

equations of motion. To obtain the value of @ in the coordinate system
o
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referenced to the landing site, the quantity (@f - @) computed by theO

trajectory determination program is subtracted from zero (the arbitrarily

assumed initial value of @). For example, if the computed value of 8_ isf
-0. 1 radian, the nominal initial value of @ in the coordinate system indicated

in paragraph 4.3. i. la of Volume III is +0. l radian and the nominal terminal

value is zero. All values of 8 presented in the following subsection of this

appendix are referenced to the landing site.

Nominal trajectories are determined for 8 sets of input information as

summarized in table I.

Values of constants used in the program are:

r

c

= mean lunar radius = 1738 krn

= 1012lunar gravitational constant = 4. 898Z0 x
3

m /sec z

go = earth's gravitational attraction (at earth's surface) = 9. 80665
m/sec Z

Z.Z.Z Nominal Trajectory Characteristics

The material presented herein summarizes the geometrical and fuel

consumption characteristics of the constant-thrust gravity-turn family of

trajectories determined by the previously discussed computer program.

Geometrical data is given in table 2 and in figures I0 through 18, the contents

of which are summarized below.

Table 2: Nominal values of initial thrust level, T ; initial thrust-to-mass

ratio, T /m ; initial angular displacement from the°landing site, @ ;
o o o

initial velocity, Vn; nominal flight time, tf, corresponding to the selected
values of initial altitude, h

o

Figure I0: Plots of initial thrust level,

ratio, To/m , versus initial altitude, ho o

T
o

and initial thrust-to-mass

Figure if: Plot of initial angular displacement from the landing site,

@ , versus initial altitude, h
o o

Figure 12: Plot of total flight time tf, versus initial altitude, h' O

t,

Figure 13: Plots of altitude, h, versus time after thrust initiation,

for the selected values of initial altitude, h
o
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Figure 14: Plots of angular displacement from the landing site, @, versus

time after thrust initiation, t, for the selected values of initial altitude, h
o

Figure 15: Plots of flightpath angle,y, versus time after thrust initiation,

t, for the selected values of initial altitude, h
O

Figure 16: Plots of velocity, V, versus time after thrust initiation, t,

for the selected values of initial altitude, h
o

Figure 17: Plots altitude rate, h, versus altitude, h,

values of initial altitude, h
o

Figure 18:

landing site,

for the selected

Plots of altitude, h, versus angular displacement from the

@, for the selected values of initial altitude, h
o

TABLE 2

VALUES OF COMPUTED NOMINAL TRAJECTORY PARAMETERS

h
O

(km)

i0

15

20

25

30

40

5O

6O

T
o

(newtons)

684O6

55644

48212

Zo/m O

(m/sec 2)

6. 032

4. 907

4. 251

@
o

(rad)

0. 1269

0. 1553

0. 1783

43216

39564

34494

31074

28570

3.811

3. 489

3. 042

2. 740

2. 519

0.1979

0.2151

0.2442

0.2683

0.2888

V
o

(m/sec)

1753.6

1749.0

1744.5

1739.9

1735.4

1726.4

1717.5

1708.6

tf

(sec)

238.9

296.0

344. 3

387.0

426.0

495.8

558.4

615.9
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The nominal trajectory is restricted to a constant thrust level• This as-
sumption makes determination of nominal fuel consumption parameters an
easy task. Two quantities related to fuel consumption can be computed.
These are _V, which is defined in equation 33, and mp, defined in equation
34 Quantity m_ is the mass of propellent consumed during the landing
maneuver." Thus,Pmp is a truer measure of fuel consumption than is AV.

The definitions of AV and mp are

tf

f T(t)
AV = re(t) dt (33)

0

tf

f dt (m = total vehicle mass) (34)
dm

m = -
P 0 dt

Since the mass rate of flow is constant (constant thrust),

for _V and mp are integrable in closed form.

_T
dm o

= k =

dt Isp go

the expressions

(35)

I
sp

go

= fuel specific impulse = 400 sec

= gravitational acceleration at earth's surface = 9. 80665 m/sec 2

tf

/ TAV = o dt
m + kt

0 o

(36)

= - Isp go in [m°_n-++oktf]

•". AV = - Isp go ini 1omo Ispg °

m o

(37)

(38)

t

m =- ff
P 0

kdt = - ktf

T tf• 0
• . m - --

P Ispg o

(39)
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The quantity m /m is the nominal fraction of initial landing vehicle mass
p o

that is consumed during the landing maneuver. Figure 19 illustrates the

variation of nominal AV requirements with the initial altitude of the trajec-

tory. Figure 20 contains plots of mp and mp/m o versus h o. All the quan-
tities required to produce these curves are contained in table 2 with the

exception of mo, which is constant at 11340 kilograms.

As expected, fuel consumption parameters increase as h o increases.

Perhaps the most important piece of information contained in these plots is

the relative sensitivity of AV and m_ to changes in ho. If h o is increased,

the fractional increase in mp is lessP than the fractional increase in AV.

Thus, if AV is used as a measure of fuel consumption, pessimistic results

will be obtained. Whenever a significant fraction of the total vehicle mass

is consumed during a thrusting maneuver, the quantity_V is no longer an

accurate measure of fuel consumption, and the parameter mp should be used.

3. MODIFIED PROPORTIONAL NAVIGATION GUIDANCE LAW

3. I Modified Proportional Navigation Guidance Digital Simulation

This program is written to simulate the trajectory and the guidance sys-

tem of a vehicle attempting to make a soft lunar landing using a modified

form of proportional navigation.

The vehicle is assumed to be moving in a central force field influenced

only by lunar gravity and vehicle thrust. The most general form of the

guidance law employed causes the vehicle to fly initially toward a fictitious

target YH meters directly above the desired landing site, as shown in

figure 21. When the relative range to the fictitious target, R I, is less than

R t, an arbitrary constant, guidance system parameters change, and the

vehicle is made to proceed toward the desired landing site. This general

form is seen to be the MPN/VT-B guidance concept described in

paragraph 4.3.2. Ib of Volume III.

3. I. I Coordinate Systems and Equations of Motion

The equations of motion are written in a target-centered inertial car-

tesian coordinate system. The Y-axis is positive upward along the landing

site vertical, the X-axis is along the horizontal and is positive toward the

landing vehicle, andthe Z-axis completes the right-handed system. The

equations of motion are:

D-41



2100 -

2050 --

2OOO

1950

8
w

E

19(30
O
w
O_

E)
0
I,o
Oc

,,_1850

._1

Z

Z
1800

1750 -

1700

Io

,I

./

20 30 40 50 60

NOMINAL INITIAL ALTITUDE (Kin)

1589 - VB --6T

Figure 19. Nominal Trajectory _V Requirements

D-42



/

/
/

_---RATIO OF rap-TO- INITIAL
MASS ( m o j.

/
20 30 4 0

NOMINAL INITIAL ALTITUDE (Kin)

5O 60

1589A-VB-69

Figure 20. Nominal Trajectory Fuel Consumption

D -43



=--- X+a
3 x

r

(Y + rc) + a
Y

(40)

3
r

Z+a
z

where

I.L

r

= coordinates of the vehicle's position

= vehicle accelerations in the X, Y, Z directions

= lunar gravitational constant

= distance from the center of the moon to the vehicle

= radius of the moon at the desired landing site (taken to be

the mean lunar radius)

a , a , a = vehicle thrust accelerations in the X, Y, Z directions
x y z

The set of equations 40 are integrated numerically to obtain the vehicle's

motion.

Let X B, YB' ZB represent a second cartesian coordinate system corre-

sponding to the roll, yaw, and pitch axes of the landing vehicle respectively.

An attitude control system, identical to that described in Appendix B of

Volume IV, roll-rate stabilizes the vehicle while maintaining the X B axis

along the line of sight to the target. In a two-dimensional situation, the YB

axis is maintained in the plane of line-of-sight rotation. The guidance

equations determine the command accelerations in the X B, YB' and Z B

directions. These accelerations are then resolved into the X, Y, and Z

directions by means of an Euler transformation.

3. I. 2 Guidance Equations

When the range to the fictitious target is estimated to be greater than R t,

the command accelerations are given by
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A )2

axB AR +gm cos ( _+p ) cos p
1

A. A A A A

[-(s+_i--_)_ _÷_m_n(_+P']_°
A

_ (R1) z A ^ ^
A -_ [(K l) ^ + gm cos (_ +_ )] sin

YB R 1

(41)

+ (s+K_,)_.A ^ ^ ] ^[- -- R 1 _2.i + gm sin (_2 +_ ) cos

A
a

z B

= 0 (for two-dimensional motion)

where the symbol A denotes an observed quantity or a quantity computed from

observed data, and

A
a

J

x B

K, S

A ^

a , a

YB ZB
= command accelerations in body axis coordinates

= guidance parameters

gm

A

P

= lunar surface acceleration of gravity

= estimated value of _ (see figure 21) which is

^ -i

= sin

A
= observed value of _ and is given by the following

expression in the digital simulation:

A t

-/
0

g_

b + (_'_Pb)(I-'_)

T

dt
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b

_Pb

"rf_

R
1

A

R 1

YH

A

R

2
[YH

= a bias error in the observation of _.

= actual angle between the Y axis and the line of sight

= a scale factor error in the observation of _2

= a time lag in the observation of

= estimated value of R I, given by

A 2 ^ A 31/2

+ R - 2 YHRC°s f_ l

= altitude of the fictitious target above the desired landing

point

--observed value of R represented by

t ^ R

^ f0 R - R + Rb+(RPb) (i-_) dtR-
T

R

RPb

T

R

R 1

R

R = the actual range to the desired landing point:

R = [ X2+ y2 + Z2] I/2

R b = a bias error in the observation of R

= a scale factor error in the observation of R

= a time lag in the observation of R

= estimated value of R 1 given by

A _,. s= R cos [3 + inp1

R = observed value of R represented by

I_ t _ _ R + Rb+(l_Pb)(i@0 )R-- f
o

dt
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k

Rb

RPb

_2
t

A

a_-f

b

£2 Pb

T _

zk

1

= actual value of the range rate to the desired landing site

= a bias error in the observation of

= a scale factor error in the observation of R

= a time lag in the observation of

L
= observed value of__-,

g&-_ +_2b +(_Pb ) (i006"----)
dt

represented by

= actual value of the line-of-sight rotation rate

= a bias error in the observation of S%

= a scale factor error in the observation of _2

= a time lag in the measurement of

= estimated value of_l (see figure gl) given by

A 1 A A A A A
f21 = "X- ( - R sin_ + R n cos _)I

R I

When the range to the fictitious target is less than Rt,
equations become

axB K_ ( )2
R -J

A. 2 A

a = - S R g2- $2 T
YB 1 R

A
a

zB
= 0 (for two-dimensional motion)

the guidance

(42)

where K I, S I, and S Z are guidance parameters and the remaining quantities

are previously defined.
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The thrust required to provide the command accelerations is

t l/Z

o ) +(a ) + (i )
= axB YB ZB

0

(43}

where

T R = required thrust vector magnitude

m
o

initial mass of the vehicle

-T
rn = rate of mass flow -

golsp

T = actual vehicle thrust vector magnitude

go = gravitational acceleration at the earth's surface

I = fuel specific impulse
sp

If Tmi n< T R < Tmax, the vehicle thrust is set equal to T R and the

vehicle body accelerations, axB a and a are set equal to the commandYB ZB

accelerations. If the required thrust is less than Tmin, the problem stops.

When T R exceeds Tmax, the thrust vector magnitude is set equal to Tmax,

and the actual accelerations are then

axB = Amax sin 5 2 cos 5

a = A cos6
YB max 2

azB = Amax sin 62 sin 6 l (44)

where T
max

A =
max

m + m dt
o
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-=- cos
1

A
a

x B
-i

6 = COS
Z

A
a

)2 + )2 + (A )2. 1/z
B YB ZB ]

By proper selection of parameters YH' Rt' S, K, S I, S Z, and K 1 a

large number of different combinations of landing points and guidance

laws can be obtained. For example, setting

Y = 0.0
H

R = 0.0
t

S = any desired value

K = any desired value

SI, $2, K 1 = 0.0 (they have no effect)

causes the vehicle to proceed directly to the landing site using modified

proportional navigation guidance (MPN). Changing YH to some positive

value causes the vehicle to proceed to a hover point dlrectly over the

desired landing site. By setting S 1 = S +.q_'K-I S Z = 0.0, Rt equal to some

positive value, and YH to some positive value MPN is flown throughout

descent, the vehicle flying first toward the hover point and then, when

R 1 < R t, toward the desired landing point. As another alternative ,
the vehicle can be made to fly the MPN/VT guidance law all the way by

setting R t to be greater than the initial range.

3. Z A Modified Proportional Navigation Guidance System with a Vertical

Landing Velocity Constraint

A modified form of proportional navigation (MPN) for use with a

terminal lunar landing guidance system has been proposed by Kriegsman

and Reiss.--2/ This guidance system yields a rather shallow approach to

2/ B.A. Kriegsman andM. H. Reiss "Terminal Guidance and Control Tech-

niques for Soft Lunar Landing, " ARS Journal, Volume 32 (March 1962),

pp. 401 - 413.
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the desired landing area and a nonvertical touchdown. The guidance technique
described herein, which is a modified version of MPN, constrains the
vehicle to land from a vertical direction. It has been named "Modified
Proportional Navigation/Vertical Touchdown" (MPN/VT).

3.2. I Derivation of Guidance Equations

Let X and Y represent the axes of a coordinate system centered at the
desired landing point on a flat moon. Let R and _ be the polar coordinates
of a vehicle attempting to soft-land at the origin from a vertical direction.
From figure g2,
r

Y

VEHICLE

v
R

LANDING
SITE

x

17501E[-VA-135

Figure ZZ.

= - V cos

= V sin

V

Reference Coordinate System

(45)

(46)

(47)
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where

V = magnitude of the velocity vector

= angle between the velocity and range vectors

0J
v

= angular rotation rate of the velocity vector

From equations 45 and 46,

R6
tan %b-

Differentiation yields

sec 2

_3

(48)

(49)

$ =-c°sZqJ[_-_ - +_2(1-Rii)j(p_)z
(50)

An equidimensional differential equation results if the following assump-

tions are made:

R

v = -Sl _+Sz _- _ (51)

a (i_)2n: SI fl 6 - S2 ---ff (521

.. K I-I (R)2 (53)

a R = R - K1 R

R K1 R K 1 - 1 KR
T • T = i t o (54)3/

-- =T ; _ , --; tf-
R _ tfo k

o o

3/ The expressions of equation 54 are taken from the approximate closed-

form solutions to the nonlinear differential equations of motion developed

in Appendix C of Volume IV.
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where

SI, $2, and K 1 = guidance parameters

a = command acceleration normal to the line-of-sight range

vector

a R
= command acceleration along the line-of-sight range

vector

T = normalized time to go

tf

R and
o o

= the nominal time of flight

= the initial values of R and

Substituting equations 53 and 54 into 50 yields

(55)

From equations 47, 51, and 55 the .......... expr " _"* _ •,o_owL_,g esslon is v_a.ned.

cos ¢ 6 + Sz o
(COS Z _) o 2 _+ (I + T -- _'L

T - SI) K 1 RR o
0

=0 (56)

Making use of equation 54,

Z ] S 2 K 1

COS

tf 2 "_ + (1 -S1) + K1 tf
- ( cosz _) D'- v L T

and f_ can be written as:

d f_ dr2 dT

dt dT dt

O

1 d_ -_

tf d T tf

o d _
where f2 is defined to be --:

dT

Similarly _. can be shown to be:

O0

• - _-_

Z

tf

mfL=O (57)
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whet e

oo d 2 _2
_2 _

Z
d'r

Substituting these two expressions into equation 57 and simultaneously

K 1 tf

multiplying both sides by the expression cos 2%5 yields the following

equidimensional equation:

2

2ooElSl s2K1T a +KI cos2_ + fl + --cos-2%5_2 = 0
(58)

If the angle %5is small, as it is during the final portion of the landing

g
maneuver where MPN/VT guidance is to be used, the quantity cos %b is

approximately equal to unity and equation 58 is approximately

ZOO [ ] o 2_:0 (59)T _ + i + K I (i -SI) r _+ S 2 K I

4/
This equation is recognized to be in the form of Euler's differential equation--

for which the solution is known. This solution has the form

a I a Z

_2 (T) = C I T + C Z x (60)

where C I and C Z are constants of integration and a I and a Z

KI (SI-I) [ _i 4Sz _ I/2]
al' az = Z 1 ± )Z

(sI - i

are given by

(61)

If a I = a Z, the solution to equation 59 has a different form:

a 1

e (T) = T (C 1 + C z In T) (6Z)

4/ C.R. Wylie, Advanced Engineering Mathamatics, New York:McGraw-Hill

Book Company, Inc., 1956, p. 282.
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This form is an outgrowth of the requirement to maintain two independent
constants of integration when the roots of the characteristic equation of a
second order linear homogeneous differential equation with constant coef-
ficients are equal. 5/

If a I and ag are to be real and distinct, then:

2
4Sz (S I - I)

< I; or $2< (63)

(S 1 _ l)Z 4

If in addition it is desired to have zero range rate at zero range in a free

space environment, the value of K l must be greater than 2. A lower bound

on the permissible value of S Z can be obtained by requiring the normal

acceleration given by expressions 64 to be finite atT equal zero.

a

R K I (aI -2) (az - Z)
o2 " [elal(aI-I)- +C2a2(%-i)- ]

tf

(64)

zi_ (K 1 - 1)
OT

tf
C al (a I - i) (az- I)• +Cza Z • ]

This condition is satisfied if

Kl+a I -2> 0

and

K 1 + a z - Z > 0 (65)

5/ J.H. Lanning and R.H. Battin, Random Processes in Automatic Control,

New York: McGraw-Hill Book Company, 1956.
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or since K 1 is already selected to be greater than Z, a 1 > 0, a Z > 0. In

addition it is desired that fl and _ be finite at 1" equals zero. Examination of

expression 60 shows that this requirement further restricts the permissible

values of a 1 and a 2. Specifically, a 1 > 1 and a 2 > 1. These restrictions on

a 1 and a 2 determine a lower bound on the permissible value of S 2 in the form

K 1 (S 1 -i) - 1

SZ > Z (66)

K 1

The lower bound of S Z is plotted versus S 1 in figure Z3 with K 1 as a param-

eter.

S 2

4.0

3.0 i

2.0 --

1.0 --

0
0

I
1.0

UPPER BOUNDARY

FOR S 2

K : 2 "--_ LOWER

J-- BOUNDARIES

K = 2.5 FOR $2

K=5

|
2.0 3.0 4.0 50

S I 1750E-VA-136

Figure 23. Admissible Values for Guidance Parameters
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Equations 54 and 60 describe the motion of the spacecraft as a function of
normalized time-to-go when the vehicle's engines provide the accelerations

given by equations 52 and 53; the guidance parameters Sl, S2, and K 1
are within the bounds defined by expressions 63 and 66; and K is re-
stricted to values greater than 2. 1

The assumptions made in arriving at the guidance law and its analytical
solution require that the relative range to the desired touchdown point, and
the range rate be small. Therefore the results are useful only for the final
flareout and letdown maneuver of the lunar landing.

3. Z. Z Evaluation of Guidance Technique

The MPN/VT guidance law defined by the acceleration commands of
equations 5Z and 53 is evaluated by means of the digital simulation program
discussed in subsection 3.1. The equations of motion of a body moving in a
central force field are written in the cartesian X, Y, Z coordinate system
centered at the desired landing point on a spherical, nonrotating homogeneous
moon. The Y axis is vertical and the X axis horizontal in the vehicle plane of
motion (two-dimensional analysis) and positive toward the vehicle.

A comparison between the analytic solution represented by equations 54,
60, and 6Z and the more exact digital computer solution is presented in

A1' df_figures 24 through Z7. The variables RI, _, and _-Tare plotted as
functions of normalized time-to-go, T . In each case the maximum error
occurs in midflight and is as much as 15 percent for R1, RI' andS, while

d_
the maximum error is about 30 percent for _. Guidance parameter values
used for this comparison are

KI=Z

S1 =Z

S2 = 0.25

The discrepancies noted above are attributed to the effects of gravity and
to errors introduced by linearizing the control law to obtain an analytical
solution.

3.3 Lunar Landing Tradeoffs and System Design

This subsection illustrates the methods used and the tradeoffs performed

in determining parameters such as spacecraft thrust-to-mass ratio,
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periselenum altitude, guidance techniques, simplicity, and acceptable sensor

random and bias errors. Subsection 4. Z in Volume III, indicates the mission

constraints and assumptions used and subsection 3.1 of this appendix explains

the analysis techniques used in obtaining most of the data presented in this

section.

The performance of the lunar landing guidance system will be measured

in terms of payload mass and the ability of the guidance system to deliver

the payload to a preselected point on the lunar surface without damage. As

the guidance system and sensor requirements are evolved, numerous trade-

offs must be performed and constraints imposed. This subsection will
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explore the tradeoffs which exist while imposing typical mission profiles and

state of the art constraints.

As discussed in subsection 4.Z of volume III, a synchronous transfer

ellipse is presently planned for the Apollo mission as the intermediate trans-

fer orbit from the deorbit point to periselenum. Although the use of a

synchronous transfer ellipse will result in an overall mission fuel penalty of
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approximately IZ0 meters per second--6/ in comparison with a Hohmann
transfer ellipse, as shown in figure 28, the synchronous transfer ellipse
has been chosen for the purpose of this study. This choice will incur a net
payload penalty of approximately 590 kilograms but will not create any sign-
ificant difference in the terminal landing trajectory. Consequently the
landing guidance methods developed in paragraph 3.3.1 will be suitable for
either a synchronous transfer orbit or a Hohmann transfer orbit.

As previously discussed, the deboost maneuver is assumed to com-
mence when the transfer orbit reaches periselenum. The term initial
thrust-to-mass ratio, (T/m)o , is used to indicate the ratio of spacecraft
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Figure 28. Characteristic Velocity Required for Landing

vs Periselenum Altitude

6/ Fuel penalties are often discussed in terms of incremental velocity

penalties (AV).

D-62



thrust level to spacecraft mass at the commencement of the deboost maneuver.

3. 3. 1 Assumptions

The requirement that the landing site be visible at the start of the landing

maneuver (periselenum) is imposed. For the purpose of this phase of the

study, the characteristics of the RL-10 engine are selected to represent the

class of engine which is to be available in the 1967 time period. Typical

engine characteristics are given below:

Thrust level 66,765 newtons (15, 000 lb)

Weight 136.5 kg (300 lb)

Throttling range i0: I

According to paragraph 4.3.Z. id of Volume III, the spacecraft mass at

periselenum will be 31, 100 kilograms. For reference purposes initial

thrust-to-mass ratios for spacecraft configuration employing one, two, and

three RL-10's are given in table 3.

TABLE 3

THRUST TO MASS RATIO

Number of

RL-10 Engines

1

Z

3

Initial Thrust-to-

Mass Ratio (T/m) °
(m/sec 2)

Z.15

4.30

6.45

The spacecraft will be required to perform a soft pinpoint landing at a

preassigned point.

3.3.2 Determination ofl
sp

The effect of fuel specific impulse, Isp, upon touchdown mass (gross

spacecraft mass at the landing point) is shown in figure Z9. Since a state of
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the art constraint limits the maximum value of I which can be chosen, an
sp

I of 420 seconds has been selected for the purposes of this study. This
sp

choice appears to be commensurate with the most efficient fuels which will
be available in the 1967 time period. Substantially larger values of I are

sp
generally associated with very low-thrust engines and, in addition, are
assumed to be unavailable in the 1967 time period. The data shown in figure
29 was obtained by generating minimum fuel landing trajectories for various
values of I where the initial altitude is 15. Z5 kilometers and initial thrust-

sp
to-mass ratio is 4.30 meters per second per second (133,500 newtons thrust
with an initial spacecraft mass of 31, I00 kilograms).

3.3.3 Determination of Periselenum Altitude and Thrust Level

Fuel penalty, in terms of incremental velocity, incurred by increasing
periselenum altitude is illustrated in figure Z8 for the synchronous transfer.
Similar data for the Hohmanntransfer is included for reference. These
curves indicate the combined deorbit and periselenum-to-touchdown velocity
increments required to perform the landing. A minimum fuel trajectory for
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Figure 29. Touchdown Mass vs Fuel Specific Impulse
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an initial thrust-to-mass ratio of 4.30 meters per second per second is used

to obtain the velocity increment from periselenum to touchdown. The syn-

chronous transfer curve indicates a fuel (AV) penalty of approximately 1.2

meters per second per 1000 meters increase in periselenum altitude.

Figure 30 illustrates the downrange distance (subtended central angle) to the

horizon as a function of altitude and shows the total downrange distance traveled

by the spacecraft as a function of periselenum altitude for two synchronous

transfer cases and one Hohmann transfer case. The altitude versus downrange

distance histories for the spacecraft are obtained from minimum fuel trajec-

tory results (Section l) from periselenum to touchdown. Two synchronous

transfer cases are shown, one for (T/m)o = 4.30 meters per second per second

and the other for {T/m)o = 6.45 meters per second per second. The Hohmann

transfer is given for (T/m)o= 4.30 meters per second per second. Note that

in all cases spacecraft downrange travel is relatively insensitive to periselenum

altitude. The intersection of the horizon curve and synchronous transfer

curve for(T/m)o = 4.30 meters per second per second and occurs at an

altitude of 28.0 kilometers while the horizon curve intersection of the

synchronous transfer curve for (T/m)o - 6.45 meters per second per second

occurs at an altitude of approximately 12. 8 kilometers. These intersections

indicate minimum periselenum altitudes where the landing site is just

visible at periselenum.

Figure 31 presents data similar to that of figure 30 except that the curve

shows the altitude at which the landing site is located on the horizon at peri-

selenum as a function of (T/m)o. Since attention here has been focused on

discrete values of (T/m)o in increments of 2. 15 meters per second per second,

this particular curve provides no additional tradeoff data but has been included

for reference purposes in the event that (T/m)o different from those assumed

here are of interest.

For a minimum fuel trajectory with a periselenum altitude of 15.25 kilo-

meters, the tradeoff between{T/m) ° andAV {fuel) requirements from

periselenum to touchdown is displayed in figure 32. This curve indicates that

a decrease in engine thrust level{T/m)o will increase fuel requirements. Note,

however, that only small decreases in fuel expenditure can be expected as

{T/m) is increased beyond 4.9 meters per second per second.
O

Figure 33 shows the tradeoff between(T/m)o and total landed mass. Again,

this curve is obtained from minimum fuel trajectory results with a periselenum

altitude of 15.25 kilometers. Here is an indication of the sensitivity of
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Figure 30. Spacecraft Altitude vs Distance to Horizon

spacecraft total touchdown mass as (T/m) ° is increased. Although the curve

indicates that an increase in (T/m) is accompanied by an increase in total
o

landing mass, the increase indicated for a (T/m) ° exceeding 4.9 meters per

second per second is very small. For example, a net increase in landed

mass of 45.5 kilograms is obtained when (T/m) ° is increased from 4.30 meters

per second per second (2 RL-]0's) to 6.45 meters per second per second

(3 RL-10's). (Figures 32 and 33 complement one another and are in effect

different forms of the same basic data.)

Figure 32 indicates that the minimum AV requirement to perform the

landing maneuver is somewhat greater than the synchronous transfer

periselenum velocity of 1744 meters per second (at 15.25 kilometers). This

result is physically reasonable since the periselenum point of the transfer

trajectory is not tangent to the lunar surface. Hence the minimum AV
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Thrust Initiation vs Initial Thrust-to-Mass Ratio

required to achieve a soft touchdown will be somewhat greater than the

spacecraft's velocity at periselenum because the spacecraft is required to

translate from the periselenum altitude to the lunar surface.

Landed mass as a function of (T/m) is shown in figure 34 where the
o

periselenum altitude is not fixed at 15.25 kilometers, as in figure 33. The

periselenum altitude corresponding to any given (T/m)o on the curve will place

the landing site on the horizon when periselenum occurs. Gonsequently, this

curve indicates the combined landed mass penalty as a function of (T/m}o

caused by two soarces, the penalty incurred as (T/m)o is decreased when

periselenum altitude is held fixed and the penalty incurred by increasing the

periselenum altitude requirement as (T/m) is decreased to maintain the
o

landing site on the horizon at periselenum.
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Since the predominant tradeoffs and fuel management influences have been

identified and studied, the selection of periselenum altitude and thrust level

can proceed in an orderly and objective manner. A three-way trade involving

payload (net landed) mass, thrust level, and periselenum altitude is required.

However, a constraint on minimum periselenum altitude must be considered.

Because of irregular lunar terrain, likely altitude errors at periselenum

(even if partially compensated during the coasting phase between deorbit and

periselenum arrival), and departures of the lunar body from a spherical

shape, periselenum altitude must exceed 15.Z5 km. Consequently, the total

net increase in landed mass arising from (T/m) = 6.45 meters per second
o

per second indicated in figure 34 cannot be completely realized in terms of

additional payload mass. Reference to exact data for a minimum fuel tra-

jectory for (T/m) = 6.45 meters per second per second at 15.25 kilometers
o

indicates that the net landing weight advantage of the 3 RL-10 engine
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Figure 33. Touchdown Mass vs Initial Thrust-to-Mass Ratio

configuration over the 2 RL-10 engine configuration(T/m)o = 4.30 meters

per second per second at periselenum of 28.0 kilometers) is 162 kg. This

landed weight advantage is achieved by employing an additional RL-10 engine

which has the following weight breakdown:

Kilograms Pounds

Engine weight = 136.5 300

Mounting Structure = 13.6 30

Fuel Lines, etc. = 4.6 i0

Total 154.7 340

= 6.45 meters perThis tradeoff indicates that three RL-10 engines, (T/m) °

second per second should be used in preference to two. The minute

(7-kilogram) payload weight increase obtained with the use of 3 RL-10
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engines also suggests that a payload weight penalty will occur if a three-
- 7/

engine and a four-engine configuration are compared.-- Consequently, the

selection of a three-engine configuration cannot be made solely upon net pay-

load performance, particularly here where the net additional payload is for

all practical purposes negligible.

A much stronger consideration, which does not involve the tradeoff re-

lationships developed in figures 28 through 34, is the relative reliability of

the use of two or three engines. Since the mission profile requires the

vehicle to perform a soft pinpoint landing at a preselected site, the failure of

one engine to operate properly is likely to result in mission failure since all

engines must be capable of developing maximum thrust to achieve the touch-

down requirements. Since the reliability factor, (reliability of one engine) N

where N = number of engines, decreases as the number of individual com-

ponents increases, the two-engine configuration is selected, providing a

(T/m)o = 4.30 meters per second per second.

This choice of (T/m)o automatically determines the lower bound on peri-

selenum altitude. To provide a safety margin for altitude errors at peri-

selenum and to provide flexibility in landing in an 18-to-27-kilometer radius

around a beacon located on the horizon at periselenum, minimum periselenum

altitude is to be 33,6 kilometers. This additional altitude will result in a net

payload mass penalty of approximately 36 kilograms.

In the event that "engine out" capability is desired, the most feasible

method for providing it seems to be to provide a third engine on the spacecraft

and maintain the thrust level required to achieve the soft touchdown pinpoint

landing at 133,500 newtons ((T/m) = 4.30 meters per second per second) as
o

previously chosen.

3.3.4 Selection of Guidance Technique

The determination of fuel specific impulse (Isp) thrust level and periselenum

altitude has been based upon minimum fuel landing trajectories. The pitch

angle program guidance technique required to obtain the minimum fuel

7/ This conclusion is supported by the very flat shape of figure 33 at (T/m)
o

is increased (e.g., no increase in landed mass as (T/m) is increased and
O

periselenum altitude is held constant) and by the fact that the minimum

periselenum altitude constraint will not allow any increase in landed mass

by the four-engine configuration, which ideally can be obtained with a

decrease in periselenum altitude.
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trajectory is basically open loop in nature and does not lend itself easily to
mechanization as a closed loop type of system capable of achieving a soft
pinpoint landing at a preselected landing site. This section is directed
toward the selection of a closed loop guidance technique which efficiently
performs the landing maneuver in terms of fuel management and also
yields a soft pinpoint landing at a preselected landing site.

Table 4 presents a fuel management comparison of two basic guidance
techniques that are available; namely the modified proportional navigation
system (MPN) and the programmed pitch angle system (OPT) which yields
the optimum fuel trajectory (as derived in Section i). The optimum fuel
trajectory results (OPT) provide a basis to evaluate the performance of the
MPN as well as to establish whether or not a requirement might exist, in
view of fuel management considerations, to mechanize the programmed
pitch angle system. The periselenurn conditions arise from the use of a
synchronous transfer ellipse. Twoperiselenum altitudes, 15.Z5 and
38.1 kilometers are used to provide comprehensive comparison of the
relative performance of the guidance techniques. In all cases I =420

sp
seconds and a periselenurn mass of 31, 100 kilograms are used.

The performance results of the programmed pitch angle optimum fuel

trajectory, MPNwith 133,500-newton(30,000-1b} thrust limit, and MPN

without thrust limiting for a periselenum altitude of 38. 1 kilometers

indicate that the MPN system with a 133,500 thrust limit out-performs MPN

without thrust limiting by _V = 8 meters per second. It is important to

note that imposing a thrust level constraint on the MPN system improves

fuel performance. This result is particularly noteworthy in view of the

fact that a 133,500-newton thrust limit will physically exist with the

mission profile and system configuration chosen in previous sections.

The MPN minimum fuel trajectory with a 133,500-newton thrust limit and

MPN without thrust limiting are compared in table 4 for a periselenum

altitude of 15.Z5 kilometers. The MPN systems are also compared to the

programmed pitch angle optimum fuel trajectory which corresponds to a

thrust level of 133,500 newtons. The MPN system with the 133,500-newton

thrust limit requires AV = 3 meters per second more fuel than the optimum

fuel trajectory.

The values of guidance parameters S and K used in table 4 are determined

by the procedure described in the following paragraphs.
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Reference to figure 5 in subsection 1.3 shows that line-of-sight angular

rotation rate is nearly constant for this class of optimized trajectories.

This suggests that the MPN guidance parameters should be selected to yield

a guidance law which causes the spacecraft to fly an essentially constant

line-of-sight rate trajectory. Investigation reveals that MPN is well suited

to this approach. First change equation 4-5 of Volume Ill to read

= (s+-- R (a-6bl+ sina
r
c

where _b is a bias value of LOS rotation rate. This guidance law tends to

hold _ equal to _b"

Kriegsman and Reiss show that the time history of _in a free space or

perfect gravity compensation environment can be expressed by

= V sin (_o/Ro} (1 - t/tf)[ K (S-l) - 1]
o

where V
O

= initial velocity magnitude

= initial angle between the LOS and the velocity vector
o

R = initial range to the landing site
o

t = time after landing initiation

tf = nominal flight time = K (R ° ¢o )/(Vo sin 40 )

S and K = guidance parameters

One can see that setting K (S-l) - i = 0

produces a constant _ trajectory. In addition, a particular value of K

corresponds to constant acceleration along the line-of-sight, which corres-

ponds roughly to the maximum thrust requirement for the minimum fuel

trajectory. Selecting this value of K, which is 2, requires that S be i. 5

to satisfy the above equation.

It is found by digital simulation that the above values of S and K produce

a trajectory very similar to the optimum trajectory derived in Section I.

Spacecraft landing trajectories from a 38. l-krn periselenum altitude

to touchdown are shown in figure 35 for each of the guidance systems.
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Notice that the optimum fuel trajectory and the trajectory corresponding to

MPN with thrust limiting are practically identical, indicating the basic

reason why the fuel expenditures for these two trajectories are substantially

identical. From a fuel standpoint MPN with thrust limiting outperforms

MPN without thrust limiting because with thrust limiting deceleration during

the initial portion of the trajectory is somewhat less than the commanded

deceleration, thereby reducing the total time to reach the landing site with

an attendant reduction of the total time during which the effect of lunar

gravity must be counteracted.
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Figure 35. Comparison of Modified Proportional

Navigation Trajectories with a

Minimum Fuel Trajectory

Figure 36 provides further substantiation of the remarkable similarity

of the optimum fuel trajectory and the trajectory corresponding to the MPN

guidance law with thrust limiting. Comparisons of range and range rate

to the landing site as functions of time are shown for both trajectories.
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The effects of MPN/VT guidance system gain constants upon touchdown

velocity, and attendant fuel penalty as well as the effect of MPN/VT switch-

over point along the nominal MPN trajectory upon touchdown velocity and

attendant fuel penalty are summarized in table 5. The fuel penalty term

used here refers to the increase in fuel usage, in terms of

_V, incurred by the use of MPN/VT to obtain the vertical touchdown with

respect to the fuel usage of the MPN system with thrust limiting. Total

fuel expenditure for performing the landing maneuver can be computed by

summing the total fuel required to perform the landing via MPN with thrust

limiting and the fuel penalty associated with the use of the MPN/VT system.

The basic guidance method utilizing the combined MPN and MPN/VT

control scheme is described in detail in paragraph 4.3. g. 1. C of Volume III.

Two techniques are considered, MPN/VT-A and MPN/VT-B. MPN/VT-A

involves switching from MPN to MPN/VT when the spacecraft range rate

to the landing site is reduced to 305 meters per second while MPN/VT-B

involves switching from MPN to MPN/VT when the spacecraft range to a

fictitious hover point is reduced to 305 meters. Fuel penalties and touch-

down conditions for both these methods are given in table 5. The MPN/VT-B

technique uses less fuel and is capable of achieving nearly zero touchdown

velocities for suitable choices of the gain constants S I, S , and K .
Another important aspect of the MPN/VT-B trajectory isZthat the %pace-

craft velocity vector is essentially vertical at touchdown.

A comparison of trajectories during the final phase of landing is illustrated

in figure 37. The optimum fuel trajectory and trajectories for MPN/VT-B

and MPN with thrust limiting are shown. Note that both the optimum fuel

trajectory and the MPN trajectory arrive at the landing point with the space-

craft velocity vector approximately 25 degrees to the horizontal while the

MPN/VT-B trajectory arrives nearly vertically.

While the significant performance index during the landing phase will be

fuel management, system performance will be judged on both fuel perform-

ance and touchdown conditions during the final phase. Because of structural

and landing gear considerations, the spacecraftts velocity vector is re-

quired to be vertical, thereby implying a nearly vertical spacecraft

attitude at the touchdown point. This requirement will limit the choice of

guidance techniques to MPN/VT-A and MPN/VT-B.

Table 4 and figures 35 and 36 indicate that the MPN with thrust-limiting

guidance technique is the logical choice for performing the landing maneuver
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from a periselenum of 38. i kilometers. This guidance technique incurs a
small fuel penalty of approximately 9 meters per second compared to an
optimum fuel trajectory but exhibits the following significant advantages over
the optimum fuel trajectory:

a. MPN is a closed-loop guidance scheme.

b. MPN is simple to mechanize.

c. A vertical touchdown can be achieved by using MPN during the major
portion of the landing maneuver and switching to MPN/VT for the final
phase.

Since acceptable touchdown conditions can be achieved with both MPN/VT-A
and MPN/VT-B, the latter is selected because of the overall fuel advantage
indicated in table 5. Table 5 also indicates that the selection of S1 = 3.1,

SZ = 0.8, K 1 = 3.0 and no gravity compensation leads to excellent touchdown

conditions and a relatively small fuel penalty. A smaller fuel penalty can be
obtained by accepting a larger terminal condition departure from zero
horizontal and vertical velocity, but the attendant value of K 1 = g will increase
system sensitivity to bias and random errors. This final selection of guidance
technique indicates a total fuel penalty of 18.1 raps in comparison with the
optimum fuel trajectory.

3.4 Lunar Landing Sensor Error Digital Program

This subsection develops the adjoint system for lunar landing which

employs the modified proportional navigation/vertical touchdown guidance

law. The nonlinear equations of motion and control expressed in a polar co-

ordinate frame are linearized and restricted here to two dimensions. The

resultant adjoint equations are solved by the lunar landing sensor error pro-

gram .(LLSE) to obtain the influence coefficients which relate sensor bias and

random {fluctuation) errors to touchdown condition errors. These influence

coefficients correspond to partial derivatives of the terminal conditions with

respect to sensor bias and random error inputs along the landing trajectory

wherein the partials are evaluated at the nominal terminal time.

This subsection is divided into four paragraphs: the linearization of the

kinematic and control equations, the development of the adjoint model, the

definition of the nominal trajectory, and a brief discussion of the application

of the LLSE program.
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3.4.1 Linearization of Kinematics and Control Equations

To apply the method of adjoint systems, the equations of motion and control

must be linearized. The moon is assumed to be a homogeneous, spherical,

nonrotating body, and the spacecraft is assumed to be operating in an ideal

central force field. All equations are expressed in terms of polar coordinates

centered at the landing site and in the plane of motion as shown in figure Zl.

F(t)

I I-
__ =__ = + _Fgm (67)

where

F(t) = force applied to the spacecraft

Fg = gravitational force = -_
r

R = vector range from landing point to spacecraft

r = radius vector from the center of the moon to the spacecraft

m = instantaneous mass of spacecraft

(')I = derivative of ( ) taken with respect to an inertial coordinate frame

= lunar gravitational constant

In terms of the polar coordinate frame,

where
d Z (R._)

i li is-
- dt 2

with respect to inertial coordinates. Also,

F(t)

m

where

- aRi R + a_2 ._ _2 (69)

a R

%

!R

in

= spacecraft acceleration along R

= spacecraft acceleration normal to R

= unit vector along R

= unit vector normal to R

D-81



The gravity force vector F can be expressed as
--g

F =JR IFg I cos (_-@) +i_IFg I sin (_- @)--g

Hence, the equations of motion can be written in scalar form:

aR F g
"" .2.

cos (_ -8) = R - R_

(70)

(71)

a + F sin(_2-0) = R_ ZR _
g

where

Linearization of equation 71 yields

R=6a R

' Z

P

+ F | -sin (_ -0 )6E) + sin (a- @) 6n |
g L I

6R+ zR_A
(72)

'{ [ ]6_ = _ 6a R + F - cos (e - @ ) 68 + cos (_'l-@) 6_'_
g

-_6_- 2_- 2_,6_i}

where the operator 6 ( ) denotes a deviation of the bracketed/quantity from

the nominal value. Equation 7g is a linear, variable-coefficient differential

equation. The variable coefficients of the deviations are evaluated using the

nominal solution to the original nonlinear differential equation. Approximate

closed-form solutions to the nonlinear differential equations, obtained in

subsection 3.3 of this appendix and in Appendix D of Volume IV, are listed in

paragraph 3.4.3 for reference.

Neglecting the term 68, the linearized equations of motion become

6R =6a R + F sin(a- 8) 6a+_ 2 6R + 2Rn6_
g

6_= _ an+F cos (1%- 8) 6n -_6R - 2_ 8R - ZR 6
g

(73)
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Next, the control equations are linearized to obtain linear expressions for

6 aR and 6a2. The nonlinear equation used to control range rate as a func-

tion of range is

KI_I kz _ _.bz

am-- K1 [ R-R b ]
(74)

Linearization of this expression yields

a a R a a R
6R + _ 8 _ (75)

6 a R = OR Ok

where

aaR KI-1 Rz _ i%2

a-r - ]

OaR 2(Kl-1) k

a R K 1 (R - Rb)

The nonlinear expression used to control normal acceleration in the

MPN/VT guidance mode is

RZ

a n = S 1 Rfi - S z _ _2

Linearization of equation 76 yields

a ag 2 0 ag 2 0 ag_ 0 oF2

6ag 2 _ 0R 6R + m0R 5i_ +--0__2 6e + _ 5{2

where

(76)

(77)

O---k-= Sz mz

_a_ k
-- =S {_ -ZS z eOR I
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The partial derivatives indicated in equations 75 and 77 are evaluated on the
nominal solution of the nonlinear equations of motion.

3.4.2 Adjoint Model

The method of adjoint error analysis used is described in detail in sub-
section 6. 2 of Appendix A of this volume. In essence the adjoint set of
equations provides the capability to estimate the effects of bias and random
errors occurring throughout the lunar landing trajectory on terminal con-
ditions without resorting to Monte Carlo techniques. Prior experience indi-
cates that the terminal error is seriously affected only by sensor errors
occurring in the final portion of the landing maneuver. Therefore the adjoint
error analysis is applied only to that portion of the landing using the MPN/VT
guidance law.

Mathematically a linear first-order matrix differential equation

_¢(t)= [A(t)] x(t); x(o)=x (78)

has a corresponding linear first-order matrix differential equation which is
adjoint to the original set, given by

r. 1 F 1
where both [A (t)] and [A(t)] are matrices. By using normalized final

conditions for the adjoint equations, [A f] = [I], the solution of equation 79

yields information that can be used to calculate sensitivity coefficients which

relate sensor errors to the resulting terminal deviations.

Figure 38 illustrates the adjoint equations in block diagram form. (The

relationship between the adjoint system block diagram and the block diagram

of the linearized actual system is given by Laning and Battin. 8_/ In addition

to the linearized kinematics and control equations, second order filters are

8/ J.H. Zaning and R.H. Battin, Random Processes in Automatic Control,

New York, McGraw-Hill Book Company, 1956.
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included to represent lateral and longitudinal engine responses as well as

sensor dynamics. The figure also includes data processing blocks added to

the adjoint system for the purpose of determining error sensitivity coeffi-

cients.

Note that the adjoint method of error analysis is subject to the principle of

linearization. Consequently, the results of the analysis are applicable only

when small departures from the nominal solution to the nonlinear equations

are considered.

3.4.3 Nominal Solution

Nominal solutions to the nonlinear differential equations are developed in

closed form in subsection 3.3 of this appendix and in Appendix D of Volume

IV. These closed form solutions, used to evaluate the time-varying coeffi-

cients of the linearized equations, are given below for reference.

i

; O --T<--T 1R b - R b T

(80)

T = tf - t (81)

f.2 1
K (R ° - R b)

tf = , i -

o

R Z -R
o

T 1 - __.

K

2(K - l)
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Z(K - 1)

l/Z

+ T

(8Z)

(83)
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a 1 a Z

C 1 T CzT
a - + (85)

a I aZ

tf tf

d e
(86)I

dt

_ d (&) (87)
dt

l/Z

al - Z {1+ L Z ] } (88)
(S1 - i)

I/Z
K (S1- i) 4SZ

a z = z {,-[1 ] } (89)
(SI-l)Z

tf aZ _2_ + o]
Cl aZ -a I o tf (90)

tf a I _2°

+ ]aI -a I o

3.4.4 Method of Application

To recapitulate, the adjoint method of analysis, and specifically the LLSE

program, yields the influence coefficients which relate touchdown error to

sensor bias and random (fluctuation) errors which occur throughout the entire

nominal trajectory. These influence coefficients represent, partial derivatives

of the various touchdown quantities, namely R, i%, _ , and fZ, with respect to

the numerous sensor measurement error quantities, and scale factor, or

percentage errors in these quantities. These partials are in effect evaluated

at the nominal touchdown time and therefore represent the value of the

partials evaluated at a fixed time. This accounts for the appearance of

influence coefficients for all touchdown quantities.

The validity of the results is subject to the accuracy with which the non-

linear differential equations can be represented by variable coefficient linear
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differential equations linearized for small departures about a nominal

solution (trajectory).

Although the adjoint program has been written specifically for MPN/VT,

the program can be used to obtain results for the MPN system by properly

adjusting the nominal solution.

Previous sections of this appendix have developed the adjoint system and

given the nominal trajectory solutions about which the adjoint equations are

linearized. Next, the initial conditions placed upon the adjoint system and

outputs of the adjoint system are discussed.

Initial conditions for the adjoint equations are determined by the output

errors of interest. In the lunar landing problem we are interested in the

position and velocity errors at the terminal point. In the polar coordinate

system used, the errors are specified by departures from the nominal touch-

down conditions in position R, i2 , and velocity, R, _ . Hence the initial con-

ditions applied to the adjoint equations are unit initial conditions on the vari-

ables x I, x 2, Yl' and Yl0 shown in figure 38. The unit initial conditions

are applied individually (one at a time); the initial condition on x I generating

R (range) error sensitivity coefficients, x 2 (0) = 1 giving l_ error coefficients,

Yl (0)= l giving_ angular error coefficients, and YI0 (0) = l giving _ error

sensitivity coefficients.

The various output quantities shown in figure 38 are the result of post-

ulating certain types of sensor output errors. The 16 sensor errors post-

ulated are listed below.

a. Bias errors

(I} Constant range bias m R

(Z) Range scale factor error SF R

(3) Constant range rate bias m_{

(4) Range rate scale factor error SF k

(5) Constant angle bias m
t2

(6) Angle scale factor error SF
[2

(7) Constant angle rate bias m_

(8) Angle rate scale factor error sF h
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b. Random (fluctuation) errors

(1) Fixed level range error

(Z} A percentage of range error

(3) Fixed level range rate error

(4) A percentage of range rate error

(5) Fixed level angle error

(6) A percentage of angle error

(7) Fixed angle rate error

(8} A percentage of angle rate error

J pR

W refers to the spectral density of the noise in the sensor indicated by the

a cc ornpanying sub sc ript.

Thus the adjoint system provides 64 influence coefficients (4 output errors

for 16 types of input errors) which are used in determining the allowable

magnitude of sensor errors to meet a certain tolerable set of output errors.

The influence coefficients are printed out in two 4 x 8 matrices, one matrix

for bias errors, one matrix for random errors.
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APPENDIX E

LUNAR ASCENT

1. ERROR EQUATIONS FOR GUIDANCE SYSTEM

The error equations are mathematical formulations which represent the

accelerometer, gyro, and platform errors as functions of the thrust accel-

erations and error coefficients. The basic method with slight modifications

is taken directly from Pitman (Ref. 1).

The error equation for the accelerometer is:

AA. --
I a0i

where

AA

a0i

all

a2i ' a3i

a4i' a5i

a6i' aTi

i

A.,1 A j, A k

i,

2+ a 1.A. + + a3iA + + + +1 1 aziAi a4iAj a5iAjAi a6iAk aTiAkAi

= the component of acceleration error,

= a bias term,

= a linear scale factor error,

= a nonlinear coefficient,

= cross-axis bias,

= cross-axis scale factor,

= input axis,

= components of thrust acceleration,

j, k, take on cyclical permutations of x, y, z.

(i)

Ref. l: Pitman, G. R. (Editor), Inertial Guidance, John Wiley and Sons, Inc.,
1962.
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The components of velocity and position are

t
AV. = # AA. dt,

0

(z)

and

t

AS. = / AV. dr: (3)
1 1

0

Along the x-axis, the values of AV are:
x

t t t t

AV = a0xt +al f0 A dr+ _0 A2 dt+ _0 A3 dr+ f0 A dtx x x azx x a3x x a4x y

t t t

+a xI0 A I0y x a6x z a7x A A dt. (4)
z x

In a similar manner, AV and AV are obtained. The values of AS , AS
y z x y

and AS are obtained by a second integration. All the integral coefficients
z

of aox, alx, - - -, are tabulated in tables 1 and Z for the direct and parking

ascents respectively. All integral coefficients containing A and V are zero

since the ascent trajectory is in the x-y plane. Y Y

The error equation for the gyro is

$i = b0i + bliAi + b2.iAs + b3iAiAs (5)

where

A.,A
1 S

i = the drift rate about the input axis,

b0i = the fixed drift rate about the input axis,

li' bzi = mass unbalance along the input and spin axes respectively,

b3i = the anisoelastic effects,

= components of thrust acceleration along the input and spin

axes .
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TABLE 1.

VELOCITY AND POSITION INTEGRALS FOR DIRECT ASCENT

Velocity Cot,fficient Integrals Position Coefficient Integrals

Value Value

Symbol

I 1

12

13

14

15

16

17

18

19

I10

Ill

112

I13

Integral

t

f0 A dtx

A2dt

.) x

t

f0 Adtz

t

fo+t

)A_dt

0

t

f0 AxAz dt

t

f0 A tdtx

t

Az tdt

t

VxAx dt

t

VxAz dt

t

f0Vz Axdt

t

v A dt
z z

Short

Boost

146.2

100.5

71.0

26.7

5.71

1.18

16.53

1.93x104

1.58x103

1 . 10xl 04

8.7xi0 Z

3.26x10 3

3.5x!02

Long Units Symbol

Boost

156.8 g-sec 111

2

66.2 g -sec 212

3

31.0 g -sec 313

183.1 g-sec 414

2

32.9 g -sec 515

3
10.6 g -sec 616

2

24.9 g -sec 717

4.16x1041 g-sec 2 818

1.03x104 2g-sec 919

2 2
1.23x104 g-sec 10110

2 2
1.53x103 g-sec 11111

2 2
1. 18x104 g -sec

12112

2 2
4.02x103 g -sec 13113

Integral

t

0II dt

t

I2dt

t

013 dt

t

014 dt

t

f015 dt

t

016 dt

t

OI7 dt

t

OI8 dt

t

OI9 dt

t

Short

Boost

1.5xlO 4

9.3x103

5.46x103

4.75xl03

5.40x103

1.20x103

1.42x103

1.31x106

2.40xl 05

Long

Boost

2.64x104

8.74x103

3.26x103

3.17xlO 4

l.lOxlO 4

1.90x103

6.59x103

4.8x106

3.56x106

Units

2
g-sec

2 2
g -se(

3 2
g -sec

2
g-sec

2 2
-S(*(

3 2
g -sec

2 2
g -sec

3
g-sec

2
g-sec

ollO dt

t

foil I dt

t

foil Zdt

t

foil 3 dt

6.99x105

2.20xl 05

3.62x105

1.55x105

1.80xl06

6.41x105

1.75x106

1.31xlO 6

2 3
g -sec

2 3
g -sec

2 3
:g -sec

NOTE: All integrals containing A or v are zero and are not listed above.
Y Y
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The error equations for the gyro become:

t

=4[u°x+ + +b3AA ]at, (6)

t

y-axis; qbzx = / [b0y+blA0 y y+bgyAz + b3yA A ]dt,yz
(7)

t

z-axiS;_xy = 4 [boz + bl A +z z bgzAy + b3zAzAy ] dt, (8)

where

_yz =

(_ZX ----

_xy =

This is shown in figure 1 .

angular displacement in the y-z plane about the x-axis,

angular displacement in the z-x plane about the y-axis,

angular displacement in the x-y plane about the z-axis.

Note that the acceleration term Ay in the last element of equation 8 does not

follow a cyclical order. This is from the orientation of the z-gyro as shown

in figure Z. By orienting the z-gryo in this manner rather than a cyclical

order, a substantial simplification of the formulas results since A = 0

and V = 0. Y
Y

Misalignment of the accelerometer input axis causes measurement of the

normal acceleration components given by

where

A I = A.1 cos _ij cos _ik + A.j sin ¢ij - A k sin _ik
(9)

A I = the resultant acceleration input to the I accelerometer

I and i, j, k, take on cyclical permutations of x, y, z.

On the assumption of small angles, the velocity errors become

t

_Vl_ /0 [Ajqbij- Ak*ik] dt.
(lO)
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A second integration gives position errors.

t

Z_SI =/0 Z_V.I dt

Equations 10 and 11

(11)

relate velocity and position errors to the gyro coefficients. The values of

AV and AS are calculated for the direct and parking ascents.

The platform error model equation is:

_ij = 91J'"(0) + e k + Pij Ai + qij A.j (12)

where

_ij =

_)ij (0):

angular displacement in the i, j plane about the i-axis

initial angular displacement inthe i, j plane about the

i-axis

e k

Pij' qij

= stabilization servo error about the k-axis in the i-j plane

platform deformations along the i-axis caused by A. and

A. acceleration components i
J

These equations have the same form as the gyro error equations. By

substituting equation IZ into equations i0 and II the velocity and position

errors related to the table errors are obtained.

Z. TRANSFER MATRIX

The lunar ascent study is primarily concerned with determining the

sensor specifications for the boost phase. It is of interest to compare the

effect of the position and velocity errors at thrust termination on the final

position and velocity states at terminal rendezvous. This section is

concerned with the variation in the initial and final states of a transfer

ellipse which is considered as a thrust free coast phase.

Since the position and velocity errors at thrust termination are given

in moon centered navigational axes, the errors must be transformed
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through the central angle traversed during the thrust phase.
transformation matrix is:

" A So]

_ OJ

cos qbf

= 0

sin qbf

0

i

0
cos qbf

Ax

Ay

AZ
.J

where

The

_f = the central angle traversed during boost,

Ax,Ay,Az = position errors at thrust termination in navigational coordinates,

As = the tangentent error component along the trajectory,
O

AYo the normal error component to the orbital plane,

Ar = the radial component.
O

The velocity conditions may be obtained by substituting the velocity

components. The resulting position and velocity errors are now properly

oriented to be transformed for the coast phase.

The transfer matrix in the most general form for any centrally traversed

angle is :

Ar/r -_ F
I dll

I
As/r [dz1

Ay/r [0

AVr/v I
Avt/v

I

AVn/vj [ 0

d41

d51

0 0 d14 d15 0

1 0 d24 dz5 0

0 cos _f 0 0 d36

0 0 d44 d45 0

0 0 d54 d 0
55

0 d63 0 0 d66

-A ro/r
0

A So/r

0

AYo/r
o

/kVr / v

o o

Avt /v
O o

AVn /v

o o

The zero subscript denotes the initial errors at the injection point of the

transfer ellipse.
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dll

d14

d15

dzl

Acos zel _ ____ + cos qbf(l + cot¢l

Z - (t--+e cos _) sin ¢I

1 Z{l-e co-s"_ L_. Ze /ffsinqbl ]
= - Z _an 8 -

+ cosq_ f (1 + cotq_ 1 tandp f)l)

tan #f))

(1 [(A2_( "sin Sf) (1 +cot @1

A cosZ%l + cos qbf

(a Z,A-:) _:_ (z + _ _°_ _-)sin Z9 1 + _ (Z-A) Z
- Z e

Ze

7 (l+ ecos@)Z+ eZ) z (1 + e cos @1

tan ¢_) )

(Z+ ecOs 01)

dg4

+3 ¢f(t + ecos_p)Z_

- (A-Z) ([-eZlSIZ/

A (A " Z) sin (Ipsin Z8

= -(I + Ze

(Z + e cos@ 1 )

Z

(1 + ecos¢)Z FA(I - e )

(i - eZ) z (i ÷ e cos _i )z x L-(A I)

A (A Z) sin _ sin Z@ (Z + e cosqb 1) ] 3dp f
" Ze

tan0 1 (1 + e cos d_)Z)

(I - eZ) 5/z

I

!

|

I
I
I

I
[
I

I

I
I
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dz5

+

+

A sin 20

Z
e

+ Z sin_(A-I)(Z+ e cos ¢)
(Z-A)

(I + e cos _)Z

(l-e 2) (I + e cos (_i)z

3¢f A (i + e cos ¢)2

2(A- i) sin

e(Z-A)

(A-Z) (1-e 2) 5/Z

1 (2 + e cos Jl )

sin @f

d36 -
cos @i

Ac°s4O i [ (A'I) c°sqbf ]
d41 = (I + e sinqb) e sin _i + sinqbf (I - cot _I cotdpf)

d44

d45

' [-A cos 81 sin Z 81 (A - Z) cos Cf

(i + e sin@)Z Z e sin _I

4

Z A cos @ 1 [(Ae- sinl)cos _f
qb)Z + sin @pf( 1 + e sin _i

+ sin ¢_f (I - cot (hl

(I - cot _f cot @i )

d51 e (Z - A) cos _ (Z - e cos_) - e sin

2 e sin _(I + e cos _) sin _1 (A-l) (2 + e cos _I )

(l-e Z) (I + e cos ¢i )Z e(Z-A)
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d54 =

A (A-Z) sin 2 01 cos _ {2 + e cos ¢i )

Ze

Z e sin _ (Z + e cos _) J .A {l-e Z)

2)Z _ A-1{l-e {i + e cos _1 )Z

A {A-Z) sin Z 81 sin _I

Z e (Z + e cos _i )-I
J

+

Z

(1 + e cos _) A(A-Z) {Z + e cos _1) cos _ sin 281

e (1-eZ) 2 (1 + e cos _1 )Z

3 tan_l (1 + e cos _)

{1 - e Z) 5/Z
+ ((1 + e cos _) - Z _f e sin 4)

d
55

z (A - :) [ (z
= _ (z - A) 1 + e cos @) cos _ - e sin z 4}

Z (1 + e cos _) e sin

(1 - e Z) {1 + e cos _1 )

(A - 1) sin @1 (Z + e cos _1)l

J

+ 3A (1 + e cos _) {
(A-Z) (l-e Z) S/Z (1

+ e cos _) - Z _f e sin _}

d63 = - sin _f

(1 + e cos 4) + cos 4f e sin

z iff
(1 +2e cos 4+e )

d66

cos _f (1 + e cos _) + sin _f e sin

cos 0 1 (1 + Z e cos _ + e Z) 1/Z

E-I2

|

|

|

|



where

r = the selenocentric radius,

v = the velocity,

81 = the angle between velocity and tangent plane,

9 = the selenocentric angle measured from perigee,

e = the orbit eccentricity,

Z
A = rv /_

= the gravitational constant,

f = the final value (subscript),

9f =91 +9

For the 180 degree Hohmann transfer 91 = 0 degree and9 = 180 degrees.

This subject is treated in greater detail in Ref. g.

3. PARF_ING ORBIT INITIAL ERROR PROPAGATION

The transfer matrix of Section 2 can be reduced to the following form for

the parking orbit.

m N

Ar/r

As/r

Ay/r

Z_Vr/V

_vt/v

AVn/V"

-Z - cos #

Z sin_ - 3 4

0

sin

2cos_- 3

0

0 0 sin_ 2 (I - cos _) 0

I 0 -z (I - cos @) -3 (# - 4 sin _) 0

0 cos _ 0 0 sin

0 0 cos _ 2 sin _ 0

0 0 -2 sin _ -3 + 4 sin _ 0

0 -sin # 0 0 0

Ar /r
0 0

_So/r 0

_Yo/ro

A'v /v
r o

o

_V t /V O

O

Av /v
n o

o

Ref. 2: Gretz, R.W. , Error Sensitivities in Satellite Ascent and Orbital

Transfer, ARS Journal, Vol. 32, No. 12, Dec. 1962.
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Similar forms for the transfer matrix are given in Ref. 3 and 4. The
elements of the transfer matrices in both Sections Z and 3 are approximations;
however, for the purposes of this study, the variations are of second order
magnitudes. The results are graphed in figures 3 and 4 in normalized form.

4. VELOCITY REQUIREMENTS BETWEEN TWO CIRCULAR CO-PLANAR
ORBITS

Problem definition consists of determining the minimum total velocity
impulse for a theoretical Z-impulse transfer between co-planar circular
orbits with arbitrary terminals. Only two geometrical restrictions are
implied, tangential (or apogee) capture at the target orbit and intersection
with the inner orbit.

In addition to the exact solution, an approximate solution is given for
obtaining quick and accurate estimates for cases where the radii ratio is
near unity and the central transfer angle is above 40 degrees. For transfers
below 40 degrees, severe fuel requirements are imposed on the interceptor
for circle-to-circle transfer.

Nomenclature (see figure 5).

V -"
t

V =

P

v Z =

v I =

_v 2 = v t v Z

Av I = IVl-Vpl =

Av I = AV I + Av Z =

r Z =

circular target velocity

circular parking velocity

elliptical velocity at apogee (point Z)

elliptical velocity at injection (point i)

= velocity increment required at point Z.

velocity increment required at point I.

total velocity increment.

target orbit radius

Ref. 3: Duke, W.M., E.A. Goldberg, and I. Pfeffer, Error Analysis

Considerations for a Satellite Rendezvous, ARS Journal, Vol. 31,

No. 4, April 1961, p. 505-513.

Ref. 4: Jensen, J., J. Lock, D. Kraft, and G. Townsend, DesiGn Guide

to Orbital Flight l, McGraw Hill, 196Z

E-14



L_ Yo ly

Aloh

L_Vro IV
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o/V (CURVES IDENTICAL)

0

+5

_v_/v

CENTRAL ANGLE

TRAVERSED

1316A" VB- 38

Figure 3. Effect of InitialState Errors on Final State Position

Errors for Near Circular Orbits
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, APOGE E

1750E- VB -152

Figure 5. Tangential Capture for Transfer Between

Circular Orbits

r I = parking orbit radius

(_t = true anomaly between injection and target contact

= gravitational constant

a = semi-major axis of transfer ellipse

= flight path angle

I p = r 2 - r I

To obtain the total velocity increment, consider the following relationships

available from orbital mechanics,

2 1 %//_ a (i - e 2)
v = (¥ - a) = r cos (13)
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Substituting into the velocity increment required at point 2 and normalizing
with respect to the target:

Av 2 v _2 r2=i 2
V V a

t t vp

(14)

Av I
The cosine law yields--:

V
t

iv vAVl Vl + - cos _/--_

v t _ v t J v t

Substituting 13 in 15

(15)

AVl = _3 r 2 r r2 /a2 2 (I - e 2)

v t _/ r I a rl_V r I

(16)

To eliminate a and e and obtain _t as an independent variable, two additional

equations for the ellipse are required. Imposing the minimum fuel constraint;

i.e., target radius equalling transfer apogee:

r 2 = a (i + e)

and at injection,

r 2 (I - e)

r = r I = i - e cos

Substituting these two equations into 14 and 16,

total required velocity increment:

Av _ 2 2K3/2--=I - x + K- 2+x -
V
t

and summing to obtain the

x (17)
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where

i - cos _t
X =

K - cos at

r
Z

r I

The above differences under the radical are very small when the radii

ratio is nearly unity and hence double precision on a digital computer was

required to obtain the graphical results appearing in figure 6. Comparison

between Av and the required total Hohmann increment AVHoH. was obtained

by simply normalizing the computer program yielding Av/_vHOH..

The following analysis provides a workable analytical approximation of

Av/AvHOH. , not requiring a digital computer program. The results are

justified graphically by comparison with the above exact derivation.

The authors in Ref. 3 have provided a first-order linear approximation to

the relationships between the initial and final state variations for low-

eccentricity orbits. Only the relevant equations in Ref. 3 will be used in

this derivation. These are given as follows:

Av Av

Ar = (Z cos M) Ar + 2r {I cos M) x y- - _ + r sin M_ (18)
O v v

A_ = 2 Av sin M + AV cos M (19)
x y

whe re

r, v = initial circular parameters

_r = initial radial variation
O

Av = initial tangential velocity variation
X

_v = initial radial velocity variation
Y

M = mean anomaly between initial and final states

Ar, A_ = final state variations in radius and radial velocity
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Note that all deviations are relative to a circular orbit. It is therefore ex-

pected that transfer trajectories of high eccentricity, obtained from a linear

perturbation of a circular orbit should be very inaccurate, i.e., orbits re-

quiring small transfer angles. Since the fuel penalty may be prohibitive at

these angles, linearization is justified for the region under consideration.

To find the injection impulse, consider first a perturbation of the parking

orbit. Since an initial altitude variation is not relevant Ar = 0, and, for
o

tangential capture at the target orbit A_ = 0. But Ar is constrained as the

difference in radii between target and parking orbits, Ar = r 2 - r I = p. Sub-
stitution of the above into equations 18 and 19 yields,

Av Av

P-_ = 2 {1 - cos M} x + sin M ----_y (20)
r v v

1 p p

Av

= -2 tan M
_v

x

(21)

Elimination of Av gives,
x

AV

y p 1

v 2 r 1 - sec M
p I

(22)

But Av
Y

Av x = AV 1 cos a I

Also,

A

from 21 --Y--= tan a IAv
x

is simply the normal component of the required injection impulse,

Av x

Solving 22 by eliminating =i and Av , the initial required impulse isY

AVl _4 3 cos 2 M

v 2r I - cosM
p I

(23)
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The final impulse is found by simply reversing the logic, i. e. , consider-
ing perturbations of the outer orbit• Since the only perturbed quantity is the
tangential velocity, equation 18 takes the form,

AV 2
--e --2 [l - cos (-M)] (24)

r Z t J Vt

where

Av
Y

Av 2

= 0 (orbital contact at apogee)

= v t - v 2

Ar
o

Ar

=0

= -(r I -r2)= P

Av2 p i

v t 2 r 2 1 - cos M

(25)

Summing the two normalized impulses,

-- , P - 3cos

v t 2(i - cos M) r I vt

2M+I

r 2

But, for circular orbits, v =_

(26)

V r
p 2

m -- m

V r
t 1

AV _ p

vt 2 r 2 (I - cos M)

_/4 2- 3 cos M + I (27)

E-22



Normalizing with respect to the Hohmann transfer M = 180°,

Av 2
m

AVHoH. 1 - cos M

- 3//2

r 3/2

I

2
M+I

(28)

As a first order approximation, let r 1 = r 2. Also, for low eccentricity

orbits, take M _ Ct" Hence,

Av
1 +%/4 - 3 cos 2%t

_VHoH. 1 - cos at
(29)

Although analytical justification for the above assumptions is not presumed,

it is evident from a graphical comparison with the exact results (see figure 6)

that the approximate equation is more than adequate in the region under con-

sideration, i.e., transfers over 40 degrees. Since it is a simple matter to

calculate Av for a Hohmann transfer, equation 29 is extremely useful for

quick and accurate estimates of the fuel penalty for various central transfer

angles.

Figure 6 shows the total velocity requirements as a function of the parking

altitude for various central transfer angles. Figure 6 also indicates the in-

efficiency of small transfer angles between circular orbits. Note that

Av/AvHOH. is practically independent of the altitude of the parking orbit for

transfers above 40 degrees. The results of figure 6 provide justification for

limiting the parking orbit to the lowest possible altitudes if fuel expenditure

is the only criterion.

5. PARKING ORBIT TRANSFER CONSIDERATIONS

This section considers the fuel requirements for boost and orbital transfer

for the parking ascent phase of the lunar rendezvous.

Referring to figure 7 which provides a measure of the total ascent and

transfer fuel requirements, Av is defined as the total velocity impulse

required for the minimum fuel ascent and transfer trajectory. This trajectory
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insures terrain avoidance during parking at 30 km and is followed by a 180

degree Hohmann transfer to 200 kin. For a similar transfer but with an

initial boost to 150 kin, 21 percent more fuel is required; for a 90-degree

transfer from 30 to 200 krn the fuel penalty is 7 percent, but the time saving

is roughly equivalent to one-fourth the period of the target orbit, or 15 min-

utes. For faster transfers from 30 krn the fuel penalty becomes quite

significant; i.e., a direct ascent is preferable.

For the high altitude boost, which takes only a few hundred more seconds

than the 30-kin boost, it is evident that low transfer angles have a significantly

lesser effect. The fuel penalty between a 75 degree and Hohmann transfer is

only 3 percent for the high altitude, long boost.

For a very quick ascent, time savings close to 25 rain can be achieved at

a fuel penalty of less than 30 percent compared with the minimum fuel ascent.

This fuel difference is equivalent to a Av of roughly 1/2 km/sec.

Referring to figure 8 which gives the ratio of transfer fuel to the total fuel

required, a 6-percent penalty is paid for a 90-degree transfer compared to

the Hohmann from 30 kin. This penalty is reduced to 1-I/2 percent for the

150-kin parking orbit. Obviously, fast transfers from low altitudes may

place requirements on the rendezvous scheme which are too stringent; i.e.,

fuel is wasted in obtaining injection velocity. Figure 9 also substantiates this

conclusion.

Figure i0 simply provides the magnitude of the total transfer impulse for

various parking orbits and transfer angles. In addition it is relevant to in-

dicate a close approximation to the efficiency of the boost phase by itself.

Thus, the difference between the characteristic velocity increment and the

parking velocity is plotted versus altitude.
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APPENDIX F

LUNAR RENDEZVOUS

SUMIViARY OF NOTATION:

a
x

a
z

D

Longitudinal acceleration of chaser due to thrusting

Normal acceleration of chaser due to thrusting

Angle between chaser-to-target range vector and pos-

itive x-axis of selenocentric coordinate system

Orientation of LOS with respect to an inertial reference

e

g

LOS angular rate with respect to inertial space

2
9.81 m/sec

h Altitude of chaser

Orbital plane inclination

I
sp

K 1, K Z

K
m

M
0

Fuel specific impulse

Control parameter s

10 3 km3/ ZGravitational constant of moon = 4.90 x sec

Initial mass of chaser

M
P

Mass of propellant consumed by chaser due to rocket

firing

R Chaser-to-target range

Chaser-to-target range rate

R
o

r
m

R
S

R
1

Chaser-to-target range at initiation of active rendezvous

Radius of moon = 1738 km

Smoothed value of measured chaser-to-target range

Range at which longitudinal control of chaser switches

from coarse to vernier
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R2
R,R

x z

t

Standoff range at termination of active rendezvous

1 1
Components of chaser-to-target range in x z system

Time

tF

t.
1

AV

AV h

Amount of time for which chaser rocket is to be fired

Interval between subsequent data points

Velocity increment

Total velocity increment required to perform a Hohmann

transfer

z,V 1 Velocity increment required for injection of Hohmann

transfer

AV 2 Velocity increment required during Hohmann transfer to

synchronize the chaser with the target

AV
I

V , V
x z

V V
xc yc

Deviation from nominaIV at injection
I I 1

Relative velocity between target and chaser in x z

system

Components of chaser velocity in selenocentric coot-

dinar e s

V , V
xc yc

VxT' Vy T

1 1
X j Z

Corrected values of chaser velocity in selenocentric

coordinate system

Components of target velocity in selenocentric coordin-

ate system

1
Chaser centered coordinate system where x is along the

local horizontal and in the direction of motion; z I is

along the radius vector in the direction of the moon

X Y
c c

Chaser position coordinates in selenocentric coordin-

ate system

X Y
c c

Corrected position coordinates of chaser in selenocen-

tric coordinate system

X , Y
t t

Target position coordinates in selenocentric coordinate

system

I. COMPUTER SIMULATION OF LUNAR RENDEZVOUS TECHNIQUES

The computer program used to simulate the lunar rendezvous is dis-

cussed in this Appendix. This program is based on several assumptions
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about the orbits of the two vehicles. A nonmaneuvering target vehicle is
assumed to be in a circular retrograde orbit about the moon. A maneuver-
able chaser vehicle is assumed to 0e initially in a lower altitude circular
retrograde parking orbit. The orbits of the two vehicles are assumed to be
coplanar and no out-of-plane deviations are considered, thereby reducing the
problem to a two-dimensional model.

The nominal case is lefined as follows: The altitudes of the target and
chaser parking orbits are 200 and 30 km respectively. The initial angle

I (figure I} between the two vehicles is defined to be such that a horizon-
tal nominal thrust applied to the chaser at its initial position will cause the
chaser to collide with the target exactly 180 degrees later. The program has
been arranged so that deviations from this nominal case can be studied. The
deviations which have been considered are a deviation in the altitude of the
chaser parking orbit, a deviation from a nominal incremental velocity vector
in both magnitude and direction, and a deviation from the nominal central
angle between the two vehicles.

i. 1 Initial Positioning of Target and Chaser

The initial relative positioning of the target and chaser vehicles depends

upon a set of deviations from nominal which are inputs to the program. The

chaser vehicle has arbitrarily been placed on the positive axis at the time

when the injection into the ascent ellipse is made. The deviation from nom-

inal thrust level is specified by an initial velocity increment Av I. Thus the

position and velocity vectors defining the ascent ellipse of the chaser are:

X =X
e p

Y =0
e

v = V I sin yxe

= v + Av Irye yp + Av I cos y

where:

X , V
P YP

Av
n

Y

= position and velocity of chaser in parking orbit of

specified altitude

= velocity increment due to nominal thrust

= deviation from nominal thrust angle (See figure l)

A set of orbital elements for the chaser is calculated from this position

and velocity vector by the method described in paragraph 1.7. 2. The target

vehicle is placed in a 200kin circular orbit and positioned initially with a

specified deviation from the nominal angle 96o (figure i) between the two
vehicles.
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Figure i. Orbit Diagram- Lunar Orbit Rendezvous

I. 2 General Flow of the Program

The program increments time at a specified interval and performs calcu-

lations at each time point based on simulated sensor readings to determine

when to make rendezvous achieving corrections to the orbit of the chaser ve-

hicle. At each time point the program determines the selenocentric coor-

dinates of both the target and chaser by applying the method described in
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paragraph 1.7. 1 to the orbital elements of each vehicle. These selenocentric

coordinates are then transformed into a local radar oriented x I z I coordin-

ate system with the origin located at the chaser. The positive x I axis lies

horizontal to the surface of the moon in the direction of motion and the pos-
1

itive z axis lies along the vertical in the direction of the moon. Thus the

local coordinates of the target are represented by a translation and rotation

of the selenocentric coordinate system with the angle of rotation kbeing the

angle the chaser makes with the axis. Thus:

-I

k = tan (Yc/Xc)

[ iVxl:C o  R Vzl L sin _ cos ,jL(Xt Xc)(Vxt Vxc )

where:

R x, Rz, V , V = position and velocity of target relative to chaser in

x z xlz I coordinate system

Xt, Yt, Vxt , Vy t = position and velocity of target in xy system

Xc, Yc, Vxc, Vyc= position and velocity of chaser in xy system

However, due to the rotation of the xlz I system from point to point, it

was found that the relative velocity terms, Vx and Vz, were not truly repre-

sentative of the closing rate between the vehicles. Thus, itbecame neces-

sary to define closing rates, R x and R z, in the xlz I system as the range

difference divided by the time interval between two successive points.

The two quantities pertinent to sensor observations are range and eleva-

tion defined as the angle between the positive x I axis (horizontal) and the line

of sight from the chaser to the target (figure I). Inaccuracies in the sensor

measurements are simulated by superimposing random numbers of zero

mean and specified standard deviation upon the actual values of range,

closing rate, and rate of change of elevation. These observations are re-

solved into x I and z I components of range and fed into a smoothing function.

T_he smoothing function performs a least square fit of a specified order on a

specified number of points and extrapolates the solution to the next observa-

tion point where the smoothed values of R x, R z, R x, and R z will be used as

the control variables in the firing laws.

I. 3 Firing Laws

The firing laws described in this subsection serve to control the firing of

the chaser rockets which are positioned along the x 1 and z 1 axes.
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The firing laws being used in this system require the introduction of sev-

eral variables. The angle D (figure I) is defined as the angle between the

range vector from chaser to target and the positive X-axis and can be ex-

pressed as:

Y -Y
-I t c

D =tan (X - X }
t c

where Yt, Xt, Yc and X c are the geocentric coordinates of the target and

chaser.

When the target-chaser range has been reduced to 25 kin, the angle D is

used as a reference for locking the onboard coordinate system. Let the angle

D i be set equal to D at the time the target-chaser range is 25 kin. Then the

positive x I axis is locked in position at an angle D i to the x-axis. The posi-
l

tive z axis is perpendicular to the x I axis and is in the orbital plane opposite

to the direction of motion. The elevation angle e (figure I) is then defined as

the angle between the positive x I axis and the range vector from chaser to

target.

The variables of control used in the firing laws are the range between the

two vehicles R, the closing rate R, and the rate of change of elevation angle

e. In simulating the firing laws the smoothed values of R, R, and e are

always used. The firing laws used in the simulation are designed to hold the

elevation angle close to zero by firing along the z I axis until the range and

range rate can be driven to zero by firing along the xl-axis.

If the rate of change of elevation angle becomes greater in magnitude than

0.3 milliradian per second for 2 consecutive seconds, an acceleration of the

following direction and duration will be applied.

tF= 0.9R

a
z

a _- - a

z zol-gI

c2a 0.5 m/se (for coarse control}
ZO

= 0. 1 m/sec 2 (for vernier control}
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I
azo is the acceleration due to thrust level of z rockets. If

IRe[> 2.5 m/sec

the coarse guidance control is used. IfIRel<2.5 m/sec the vernier guidance

control is used. There is a mandatory coasting phase of 3 seconds between
I

all z -axis firings.

The xl axis firings during coarse guidance control are designed to drive R

and i_to zero between the two curve s represented by the following inequality:

i<
2

K Z = 0.70 m/sec

2
K 1 = 0.35 m/sec

R I = stand-off range (200 m)

Under conditions of negative acceleration,

applied for a time duration of:

1.7 ( - _/KIlR - R11 +IR])

tr: la×l

a x of -0.5 m/sec 2 the thrust is

xf IRI <s mlsec, a vernier guidance control is used in the x I axis firing.

If the chaser is in either quadrant one (R-R1>0 and R>0) or quadrant three

(R-R 1 < 0 andR < 01the range is opening from the rendezvous point. The

firing time is computed as:

o. 9 MKll R - Rll +IRI)

I
If the chaser is in quadrant two (R-R 1 < 0 and R<0) or quadrant four

(R-RI < 0 and R < 0)and if the closure is too rapid {i.e., IRl >_KZIR-RII 1

the filing time is computed as:

1.7s ( - JKll R-Rll + I RI)
tF= laxl
If the chaser is in quadrant two or quadrant four and the closing rate is too

slow (i.e., I_I< JKI[ R - RII) the firing time is

0.9 ( _/KI]R - RI[ - JR[ )

laxl
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When the vernier guidance control is incorporated, the above equations
use the following constants:

K I = 0.07 m/sec 2

K 2 = 0.14 m/sec 2

2
I%1 = 0.1 mlsec

R 2 is substituted for R 1

R 2 = 50 m (stand-off)

During both coarse and vernier firing control the firing duration must be

at least 2 seconds before the thrust is actuated. Also, a coasting time of at

least 3 seconds is set between xl-axis firings.

The rendezvous maneuver is considered to be complete if:

R = 50 ÷10 meters

and IP,I _ o.s m!sec.

1.4 Corrections to Chaser Orbit for Firing

During periods of firing, corrections must be made to the orbit of the

chaser vehicle. These corrections are made by superimposing the effects of

firing over a short time period (one second or less) on the position and vel-

ocity vectors of the chaser. The effects of firing must first be transformed

back into the selenocentric coordinate system and then added to the chaser

position and velocity vectors. This operation can be represented by the fol-

lowing matrix equation.

Vycjtycvy jLcos _sink

/2 ax At a At
• X

LI/2 az At 2 a At
z

where:

A A A A

Xc, Yc, Vxc, Vyc = corrected position and velocity components of chaser
At = time interval over which correction is made

F-8

I

I

I

I

I

I

I

I



The corrected position and velocity vectors of the chaser are used to

calculate a new set of orbital elements by the method described in paragraph

1.7.2. The new orbital elements are used for subsequent positioning of the
chaser•

I. 5 Noise Generation and Smoothing

The program has been planned to provide a specified order N, of least

squares smoothing for a specified number of points, M. The smoothed

values of R x and R z are saved for the previous M time points. At each new

time point (intervals of one second are taken when program is in noise gen-

erating mode) the blocks of smooth ranges are updated by adding the new

values and dropping the values associated with the oldest time point.

It is desired to fit a function of the following form to the observed data.

ao + alt + a2 t2 + - - - + an tN = R

If we express the observed data at each of the M points in an equation of

this form we obtain the matrix equation:

" 1 t I t2 1NI''" t

1 t2 t_ ... t2N

2 N

1 t M tM... tM

or in the matrix form:

"ao l "RI

I
a I I= R 2

• I "
e •

e •
I

.aN RN

D]
When the least squares technique is applied to this system of equations,

a solution for the coefficient matrix FAl is obtained in the following form.

:(M )-'. 11 j••
The smoothed value of range can now be found at the next time point by

substituting the time of the next observation into the general equation.

R n = ao + alt n + a2tn 2 - _ _ + antn N
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where:

tn = time of the next observation

R n = smoothed value of range at time tn

Since the onboard computer system cannot instantaneously perform the

smoothing operation the smoothed values have been projected ahead to the

next time point so that they can be used as the control variables in the firing

laws while the present observations are being smoothed.

1.6 Corrections to Smoother Input for Firing

During periods when the control rockets of the chaser are firing, the ac-

celeration of the chaser due to the firing is much greater than the acceler-

ation due to orbital motion. This extra acceleration would normally tend to

cause the smoother output to lag behind the actual values. However, since

the firing laws allow the anticipation of firing from one time point to the next,

the smoother input can be corrected to offset the effects of the added accel-

eration.

The smooth ranges can be adjusted by adding to each of the stored values

an increment equal to the effects of the added acceleration applied over a

time period from the projected time point to the time point associated with

each stored value. Thus, if the subscript 1 represented the oldest time point

and the subscript M represented the most recent time point then the adjust-

ment can be expressed as:

2 I <i <M
R. = R. + (M - i + i/2) a_t

IC I

where:

R.

Ic

Ro

i

= adjusted value of smooth range

= uncorrected value of smooth range

= acceleration due to rockets being fired

A t = sample interval

These corrections are made to each of the components of range.

Similar adjustments are made to the smoothed values of range rate,

and elevation rate, e. Using a similar notation as found in the case of

F-10
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range, the range rate adjustment can be expressed as:

R. = R. + aAt
Ic i

and the elevation rate adjustment can be expressed as

• • aAt
e. =e.+--

ic i R.
1

where:

R.
IC

I

IC

e.
l

= adjusted value of smooth range rate

= uncorrected value of smooth range rate

= adjusted value of smooth elevation rate

= uncorrected value of smooth elevation rate

a = acceleration due to rockets being fired

At = sample time interval

1.7 Transformations between Selenocentric Coordinates and Orbital

i/
Elements--

Under the following subheadings methods are discussed for transforming

selenocentric coordinates to orbital elements and vice versa. Symbols used

in the following subheadings are defined as follows:

Z 1, Z 2,

.
1' Z2'

Z 3 = selenocentric position components

Z 3 = selenocentric velocity components

The following six parameters are referred to as the orbital elements.

a = the length of the semi-major axis

e = the eccentricity of the ellipse

i_[ Paragraphs 1.7. I, 1 7.2 and 1.7.3 of this subsection are extracted

from Ref i.

Ref.
iDavenport, P. B., Coordinate Systems and Transformation for Earth

Satellite Prediction, Westinghouse Electric Corp., Report No.

AA-2547-61, December 1961.
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|
= right ascension of ascending node (the ascending node is the point

where the satellite crosses the Z 1 - Z Z plane, equator, from south
to north) 0 < _<Zw

= inclination of the plane of the orbit to the Z I - Z 2 plane (0-<i-<w)

= argument of the perigee, the angle from the ascending node to the

point of perigee ( 0 < _< 2w)

T = epoch for the coordinate system and the time perigee occurred.
O

The following auxiliary parameters are also often used.

P = period of the orbit

n = mean angular motion of the satellite in the plane of the orbit

T --time of ascending node
n

1.7. i Selenocentric Rectangular Coordinates from Orbital Elements

The selenocentric position, Z, and velocity Z, are obtained from the

elements a, e,_, i, _, and T o (figure 2) at time t by the following:

-3/z
N=a

M=N(t-T )
0

the quantity M is known as the mean anomaly.

E = M + e sin E

The equation above is Kepler's equation and must be solved for the eccentric

anomaly E (paragraph 1.7.3). Once E has been obtained, the sine and co-

sine of the true anomaly, u, (figure <)andthe lengthof radius vector r are

given by:

_I- eZ sin E
sin u =

I - e cos E

COS U =

cos E- e

I - e cos E

r = a(l - e cos E)
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Let

H

II
li

I
II

C 1 = cos_ cos (to + u) - sin_cos i sin (¢o + u)

C Z = sin _ cos (_o + u) + cos_cos i sin (o_ + u)

C 3 = sin i sin (¢0 + u)

(these are the direction cosines of the satellite)

where

sin (to + u) = sin co cos u + cos ¢o sin u

cos (¢o + u) = cos ¢o cos u - sin to sin u

then

Z. = r C. (i = 1, 2, 3)
1 1

The Z. are differentiated to yield the
1

Z. = G_ ___-a b. (i = 1, 2 3) 2/
i e r 1

geocentric velocity components.

where

b I = Cle sin E -%//_-

b 2 = C2e sin E -%/_ -

b 3 = C3e sin E +_/_ -

Z
e cos _sin (¢_ + u) + sin _2 cos i cos (¢o + u)

2
e sin _2 sin (to + u) - cos _2 cos i cos (_ + u)

Z
e sin i cos (co + u)

Alternate expressions for the rates in terms of total velocity, V, but re-

quiring further calculation are given below:

V - _ %/I - e2 cos ?-E
r

b.

S. ---- 1

ij 2 2I - e cos E

(i = 1, 2, 3)

2_/ In the system of units used for this program, the magnitude of the grav-

itational parameter, Gm is set equal to one. The dimensions have the

form of (Len_ th)3 e

Z
(Time)
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Z_

N--POINT OF NODAL CROSSING

P-- POINT OF PERIGEE
S- SATELLITE

_-- NOP

_- POS

_--LONGiTL_DE OF ASCENDING NODE

J- INCLINATION

I_A-Ve- s

Z2

Figure 2. Orientation of the Orbital Plane

(the S are direction cosines of the velocity vector)
I

_ =vs (i= i, z, 3)
I I

In some instances the period, P, or mean motion, n, may be given as an

element instead of length of the semi-major axis, a. In either case, a, can

be obtained by one or both of the following relationships:

2,11"

n = p

-2/3
a = n

The element T

(time of perigee), n

(time of ascending node) is often given rather than T O

In this case T o is obtained by the following relations:
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Q

P

• S-- SATELLITE

C-- CENTER OF ELLIPSE

F-- FOCI OF ELLIPSE
(CENTER OF GRAVOTY)

E- ECCENTRIC ANOMALY

u- TRUE ANOMALY
1589A-VA- IZ

Figure 3. Eccentric Anomaly and Focal Polar Coordinates

E¢ ° =tan-1 (-sin ¢o %/_1 -
,, e + cos oa

-sin oa_
sin E

oa I+ ecos oa

e E

T : T . (oa- e sin _o)o n n

Z

°)

If E0_ is in the third or fourth quadrant then it should be changed to a

negative angle to make the time between T n and T o a minimum.
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1.7.2-

-1 [(z z -z zz)/(z_2 = tan Z3 3

Orbital Elements from Selenocentric Rectangular Coordinates

_i[i = tan Z3/(Z z cos _- Z 1

-l [ Z3e = ¢0 + u = tan /sin i (Z

r_ = Zl _1+ ZZ ZZ Z3 _3

1 Z3 - Z3 ZI)]

sin _ ) ]

cos _ + Z
1 2 sin _ )]

2 Z Z Z

r = Z 1 + Z Z + Z 3

1
a

2/r - V g

e = I/a Ja (ri_)2 + (a - r)

If e = 0 then ¢0 = 0 and M : E = u : e

otherwise:

E : tan -1 [ _fa rr/(a - r)]

-1

u =tan [ i_i-- eZ sin E/ (cos E - e)]

IVI = E - e sin E

_0 = E - U

In either case T O

-31z
n = a

M

T O =t --_-

is found by the fomulas:

Additional Relations

p = a(1 - e 2) (known as orbit parameter)

P
r =

1 + ecosu
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r

sin u

v]a e sin E a e n sin E

r 1 - e cos E

= Vq r (i - e2)3/2
e

p-r
cos u = --

er

/ 1 + e
tan(u /2)=/

1 - e
tan (E/Z) J

1 - COS U

i + cos u

u

sin E

cos E

-i e
=tan [%/_- 2sin E/(cos E-e)]

=,_/_-_i - e2 n _I - e2

Z (i - e cos E)Z
r

_I 2- e sin u

l+ecosu

rr

e + cos u

I + e cos u

a - r

a e

n

1 - e cos E

dr
m

du

r e sine

_/I - e2

V 2-2 ,2= r u + r

Z Z -Z Z
1 2 2

z z - z3
! j

Z 1 Z 3 - Z 3 Z

=,JZ/r - i/a

i = jq-_z cos i

Z = _/_J1 - e2 sin _ sin i

= v/_-J - E g cos _ sin i
1
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1.7.3 Solution of Kepler's Equation

E =M+esinE

Let

E ° = M + e sin M (I + e cos M)

M-E + e sine
o O

AE =
1 - e cos E

O

E = E +AE
1 o

If E 1 and E o agree to the accuracy wanted then E 1 is the desired approxima-

tion to E. If they do not agree, then replace E o by E 1 and compute a new E 1 •

If the calculations are being done by hand, the above process becomes

more laborious as e approaches 1. In this case a better value of E o can be

obtained by plotting the two curves:

y =sine

and

y = lie (E - M)

as a function of E. The abscissa of their point of intersection is the value of

E satisfying the equation.

Another iteration which is simpler than the one above, but requiring

more iterations for the same accuracy is: Ei+ 1 = M + e sinE..1

Z. INPUTS FOR ANALYSIS OF LUNAR ASCENT TO RENDEZVOUS

The inputs used for the analysis in paragraph 5.3. Z. l of Volume III are

obtained from an analysis of lunar rendezvous which is not part of this re-

port but is essentially similar to the lunar rendezvous analysis of Section

6.0 of Volume Ill except for the guidance and control scheme used. The

guidance and control method is not considered representative of typical ren-

dezvous procedure primarily because of excessive fuel requirements. For

this reason, the analysis is not included.

The results of the analysis pertaining to injection sensors are listed in

table l below to serve as a reference for paragraph 5.3.2. 1 of Volume III.
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TABLE 1

INJECTION SENSORREQUIREMENTS

Symbol

6r

6v

6N

s¢

6¢

6R

6t

6i

Quantity

altitude

velocity

pitch attitude

yaw attitude

central angle

range

timing

inclination

Required Sensor

Accuracy (3#)

1.4 kin(4.7% of R)

i. 5 m/see

2.0 deg

22.2 deg

O. 28 deg

Z. 07o of R

40.6 sec

0.8 deg

State of the Art

Accuracy (3_)

30 m (0.1% of R)*

0.3 m/see

0.3 deg

0.3 deg

0.1% of R

3 sec

0.1 deg
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